STAT31440 Applied Analysis

Notes for Exam Preparations

Seung Chul Lee

A Note of Caution:

These notes are created solely for my personal use and do not accurately represent the pedagogy or
the material covered for the course named above. I have taken this class during Fall 2022, which may
or may not have identical structure in future quarters. All errors contained are my own.
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1 Definitions

1.1 Metric Space

e limsup/liminf of sets

oo

limsupAi:m GAi 7liirgio£1fAi:G ﬁAi

1700 j=1 \i=j j=1 \i=j
e Metric space
A metric space (X, d) consists of a non-empty set X, d: X x X — [0,00) s.t.
1. d(z,y) = d(y,x),Vx,y € X (symmetry)
2. d(z,y) =0=>z=y,Vo,y € X.
3. d(x,2) < d(z,y) +d(y, 2),Vx,y, z € X (triangle inequality).
e Diameter

(X, d): metric space, A C X, then

diamA = Supx7y€A d(.’lf, y) 7A # ¢
0 ’A — d)

and we say A is bounded if diam A < oo.
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e Normed linear space
Let E be a vector space over F =R or C. We say that E is a normed linear space if 3||-|| : E —
[0, 00) s.t.

1. |zl =0 < z=0€ E,Vz € E.
2. ||az|| = |a||z||,Va € E,a € F.
3. [lz +yll < llzll + llyll, Vo, y € E.

e (P space
1

PN*) =< (1, Tp,y ... ) s 2 € RV and <Zmi|p> < oo

i=1

e p-norm

00 »
llz]lp := (ZIMI”)
i=1
e Convergence of sequences

(x;)i>1 C X, a sequence, converges to z, € X if Ve > 0,3In > 1 s.t. Vi > n,d(z;,x.) < €.

e Cauchy sequence
(z;) € X a sequence in X is a Cauchy sequence if for all € > 0, Im > 1 for all 4,5 > m,
d(iL’i, iL’j) < E.

e Complete metric space
A metric space (X, d) is complete if every Cauchy sequence in X converges in X.

e Banach space
If a normed linear space F is complete w.r.t. the metric d(z,y) = ||z — y||, then (E, ||-]|) is called
a Banach space.

e Convergence of series
If (S,)n>1 defined as S, := Z?:l x; converges to s € R, Zf; x; is said to converge to s.

e Absolute convergence of series
Yoo, @; s said to be absolutely convergent if ».° |2;| converges in R.

e Upper/lower bound
A C R has an upper bound M € R, lower bound Le Rifr e A=< M,z€ A= x> L and
A is said to be bounded from above (below) if such an M (L) exists.

e Supremum/infimum
An upper bound M for a set A C R is a least upper bound (supremum) if M < M’ for all upper
bounds M’ of A. Similarly, a lower bound L of a set A C R is a greatest lower bound (infimum)
if L > L’ for all lower bounds L’ of A.

e limsup/lim inf

limsup x,, = 1i_>m sup{zy : k > n} = inf{sup{ay : k >n}:n>1}
n—oo

n—oo

liminf 2, = lim inf{xy : k > n} = sup{inf{z : k >n} :n>1}
n—oo n—oo
e Continuity
f : R — R is continuous at g € R if Ve > 0,30 > 0 s.t. Vo € R |z — x¢| < J implies

[f(z) = f(zo)| <e.

e Uniform continuity
f: X — Y is uniformly continuous on X if Ve > 0,36 > 0 s.t. Va,y € X,d(z,y) < ¢ implies

d(f(x), f(y)) <e.
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e Sequential continuity
X,Y: metric spaces. f : X — Y is sequentially continuous at € X if V(x,)p>1 C X s.t.
Ty, — T as n — 00, the sequence (f(z,))n>1 converges to f(x) € Y as n — .

e Upper/Lower semicontinuity
A function f : X — R is upper semicontinuous on X if V(z,),>1 C X such that z,, — « for
some x € X implies f(x) > limsup,,_,. f(xn).
Similarly, f : X — R is lower semicontinuous on X if V(zp)n>1 C X, z, — z,2 € X implies
f(l') <liminf, f(xn)

e Open/Closed ball
The open ball B,(z) = B(x;r) is the set B,(z) := {y € X : d(z,y) < r} and closed ball
B.(z):={y e X : d(z,y) <r}.

e Open/Closed sets
G C X is an open set if for every x € G, Ir > 0s.t. B.(z) CG. A set F C X is closed in X if
X\ F is open.

e Topology on a set
T is a topology on X if the family 7 of open subsets of X satisfies

1. ¢, X €.
2. ABerT=ANBeT.

3. {4, :i € I an arbitrary family of elements of 7} = |J,.; 4i € 7.

icl
X equipped with 7 is called a topological space.

e Convergence in topological space
(zn)n>1 C X converges to x € X for a topological space (X,7) if for all A € 7 with « € A,
AN >1s.t. Vn> N,z, € A.

e Measure zero (child’s version)
A C R is said to have measure zero if for every € > 0 there is a countable collection of open
intervals (I,) s.t. A C U, I, and Y .2, length(1,,) < e.

e Closure
The closure of a set A in a metric (or topological) space X is

A= N F

ACFCX,F:closed

which is the smallest closed set containing A.

e Dense in a metric space -
(X,d): metric space. A C X is dense in X if A= X.

e Separable
(X,d): metric space is separable if X contains a countable dense subset.

e Isometry/Isomorphism
X,Y: metric space. i : X — Y is an isometry if

d(Z(l‘l),Z(fﬂg)) S d(l‘l,l'g),vzhl’g c X.

If ¢ is an isometry that is surjective (onto), it is a (metric space) isomorphism.

e Completion of a metric space o
Given metric space (X, d), another metric space (X, d) is a completion of X if

1. 3i: X —» X an isometry.
2. i(X) is dense in X.
3. (X,d) is complete.
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e Equivalence relation
A relation ~ defines an equivalence relation if it is

1. reflexive: a ~ a,Va
2. symmetric: a ~ b <= b~ a,Va,b
3. tramsitive: a ~ b,b ~ c=a ~ ¢,Va,b,c

e Sequential compactness
X: metric space. K C X is sequentially compact if every sequence in K has a subsequence which
converges to a point in K.

e Open cover
X: metric space, A C X. A collection {G4 }aer of subsets of X is said to cover A if

AcC U G
acl
If every G, is open, we say {G,} is an open cover of A.

e c-net
Fore >0 and A C X, asubset F = {x, : « € I}, with I: arbitrary index set, is a e-net for A if
{B:(x4) : € I'} is an open cover of A, i.e., A C J,c; Be(7a)-
If I is finite and F is an e-net, then F is a finite e-net.

e Totally bounded
X: metric space. A C X is totally bounded if for every € > 0 there exists a finite e-net for A.

e Compactness
X: metric space. K C X is compact if every open cover of K has a finite subcover.

e Precompact: B
X: metric space. A C X is precompact if A is compact.

1.2 Space of Continuous Functions/Contraction Mapping Theorem
e Some subspaces:
— C(X): space of real-valued continuous functions in X.
— Cy(X): space of real-valued bounded continuous functions in X.

— C.(X): space of real-valued continuous functions in X with compact support, i.e.,

Co(X):={f: X—>R:feC(X), suppf C X : compact}

— Cp(X): closure of C.(X) in Cp(X).
Ce(X) € Co(X) C Gp(X) € C(X)
with equality if X: compact.

e Pointwise convergence:
fn — f pointwise as n — oo if for all x € X, f,(z) — f(z) (in R) as n — oo.

e Uniform norm:
Uniform norm ||-||o is a norm defined on Cp(X) as

1fllsc = sup|f(z)]
reX

and convergence in the uniform norm is called uniform convergence.

e Equicontinuity:
X: metric space. A family & of functions in C(X) is equicontinuous if Vo € X, > 0, 30 > 0
s.t. Vy € X, d(x,y) < ¢ implies |f(x) — f(y)| < € for all f € .Z.
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1.3

Lipschitz continuity:
(X,d): metric space. f : X — R is said to be Lipschitz continuous on X if 3L > 0 s.t.

|f(x) = f(y)| < L-d(z,y),Y2,y € X.
Lipschitz constant:
. T) — .
Lip(f) = sup LTI _in(c (a) — p)) < 0 o) vy € X)
TH£Y d(iL’, y)
Space of continuously differentiable functions:
CY(X)={f € C(X): f"is continuous on X}.
ODE IVP Solution:

(+) {iu(t) = f(t,u(t),t >0
u(0) = ug

A solution to (x) is a function u € C*(I), I C R open with 0 € I s.t. @(t) = f(t,u(t)), Vt e I.

Contraction:
(X,d): metric space. A map T : X — X is a contraction if 30 < ¢ < 1 s.t.

d(T(x), T(y)) < C-d(z,y), Y,y e X.
Bounded linear map:
A linear map A : X — Y is bounded if 3¢ > 0 s.t. ||Az| < ¢||z|, Yz € X.

Differentiable:
X,Y: Banach spaces, f : X — Y. f is differentiable at z € X if 3f’ : X — Y linear bounded
map s.t.

flx+eh) = f(z) +ef (x)h + o(e)

as € — 0.

Measure and Integration

o-algebra:
A o-algebra on a set X is a collection A of subsets of X s.t.

1. g A
2. Ac A= A=X\Ac A
3. If (Aj)ier is a countable family of sets in A, then | J,.; A; € A.

Measurable space:
A set X with a o-algebra A on X is a measurable space. The elements of A are measurable sets.

Measure:
(X, A): measurable space. A measure on (X,.A) is a map p: A — [0, 0] s.t.
1. u(g)=0

2. If (A;)ier is a countable family of pairwise disjoint sets in A, then

" (U Ai) = (A,

icl el

Finite/o-finite measures:
w is finite if p(X) < oo, and o-finite if JA;, Ao, ... s.t.

- Ua
=1

with p(4;) <oo, Vi=1,2,....
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e Measure space:
(X, A, p) is a measure space with A a o-algebra on X and p: A — [0, 00] a measure.

e Generated o-algebra:
Given F C P(X), the o-algebra generated by F, A(F), is the intersection of all o-algebras
containing F. This is the smallest o-algebra that contains F.

e Borel g-algebra:
(X, 7): topological space. The Borel o-algebra, denoted B(X), is A(7), the o-algebra generated
by the collection of open sets.

e Counting measure:
X: any set, A = P(X), the counting measure v is given by v : P — [0, 00|, v(A) = #A (i.e., the
number of elements) for A C X.

e Dirac delta measure:
Given zy € R”, the Dirac delta measure

. 0, ifxgg A

e Lebesgue measure:
The unique measure A on B(R™) satisfying

)\((al,bl) X X (an,bn)) = (bl — al)(bg — a2) v (bn — (Ln)

is the Lebesgue measure on B(R™).

e Complete measure space:
(X, A, 1), a measure space, is complete if every subset of a set of measure zero is measurable.

e Lebesgue measurable sets:
The class Z(R") of Lebesgue measurable sets is the completion of B(R") w.r.t. the Lebesgue
measure.

e Measure zero:
(X, A, p): measure space. A C X has measure zero if A € A and u(A) = 0.

e Almost everywhere (a.e.):
A property that holds except on a set of measure zero is said to hold almost everywhere (a.e.).

e Essential supremum:
esssup A = inf{C : 3N C R measure zero s.t. z < ¢,V € A\ N}.

e Equality a.e. of functions:
(X, A, u): measure space. f,g: measurable functions. f and g are equal a.e. w.r.t. p if

n({z € X : f(z) # g(x)}) = 0.

e Measurable function (w.r.t. measurable spaces):
(X, A), (Y,B): measurable spaces, f : X — Y is (X, A)—(Y,B) measurable if f~1(B) € A,
VB € B.

e Extended real line:
R =R U {—00, 00} with conventions 0-co =0-(—o0) = 0.

e Measure preserving:
T : X — X measurable, (X, A, p): measure space. T is measure preserving if

p(T71(A)) = p(A),VA € A.

e Measurable function:
f:X — R (or R) is measurable if it is (X, A, u)—(R, B(R)) measurable.
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e Characteristic (or indicator) function:
(X, A): measurable space, A € A,

0, ¢ A
XA(x)_{L r €A

e Simple function:
¢ : X — R written as

n
w = Z CiXA;
=1

for ¢1,...,¢, € R, Ay,..., A, € Ais asimple function.

e Partitioning a function:
f: X — R, measurable.

[ =f+—f-, where f, :max{f,O}, f-= —min{f,O}

e Lebesgue integral (of a simple function):
(X, A, p): measure space. For ¢ : X — R, a simple measurable function, ¢ = 2?21 ciXxA,, the

Lebesgue integral is
n
/wdﬂ = cip(A;)
i=1

e Lebesgue integral (of a general function):
(X, A, p): measure space. f: X — [0, 00] measurable.

/fdu = sup {/(pdu : ¢ simple with ¢ < f}

e Integrable:
A function f is integrable (summable) if [|f]|du < oco.

e Product o-algebra:
(X, A), (Y, B): measurable spaces. The product c-algebra A ® B is the o-algebra generated by
the collection of sets ¢ ={A x B: A€ A, B € B}.

e [P space:
(X, A, 1): measure space. 1 < p < oo.

’(X) = {equivalence classes of functions f: X — C: /|f\pd,u < oo}

Also,

L>(X) = {equivalence classes of functions f : X — C: esssup|f(z)| < oo}
reX

e LP norm:
For 1 < p < o0,

1l = ( /. If”du>p

£l oo (x) = ess sup| f(z)]
zeX

For p = o0,
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2 Useful Facts

2.1 Metric Space
e Cauchy-Schwarz inequality

w-y < |yl

e (X,dx), (Y,dy): two metric spaces
= X x Y is also a metric space with product metric defined as

d(u,v) = dx(ux,vx) +dy(uy,vy),u = (ux,uy) € X xY,v = (vx,vy) € X XY

e If F: normed linear space, then E is a metric space with d(z,y) = ||z — y||,Vz,y € E, i.e., the
norm-induced metric.

e E: normed linear space, (,),>1: a sequence in E.
If x, — x € F for some = € E, then

Tim ] = 1]

i.e., ||| is continuous on E.

e Holder’s inequality (in R™)
z,y € R" 1 <p<oo,1<qg< o0, % + % = 1 (conjugate exponents). Then,

n
Y Lzl < llzlpliyl:
j=1
e (z,): Cauchy = (z,): bounded.
o (z,): converges = (z,): Cauchy.
e A normed linear space may be equipped with multiple different norms.
e > x,: absolutely convergent = > x,: convergent

e In R or a Banach space:
in—>s < Ve >0,IN > 1st. |[Zpp1+ -+ Tnyp| <&, Vn>N,p>1

(a version of Cauchy criterion).
e Existence of inf/sup for bounded sets A C R <= completeness of R.

e liminf, limsup always defined for sequences in R.

liminf z,, <limsupz,
n—00 n—oo
Ty, = ¢ <= liminf = limsup ==z
n—oo n—00
e [a,b]: closed, bounded interval in R, f: continuous on [a,b] = f : uniformly continuous on [a, b].
o f:R"™ — R” is affine if
fltr+ (1 =t)y) =tf(x) + 1 -t)f(y), Yo,y eR",0<t <1

Every affine function is uniformly continuous on R™ and can be written as f : z — Az + b for
A € Lin(R™",R"),b € R™.

e XY metric spaces. f: X — Y,z € X, f: continuous at x = f: sequentially continuous at x.
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f: continuous on X <= f: both upper and lower semicontinuous.

X,Y: metric spaces, f : X — Y, continuous on X <= for every G C Y open, f~1(G) is open
in X.

Open mapping theorem
E, F: Banach spaces, T : E — F', continuous, linear, surjective = 7": open map, i.e., maps open
sets to open sets.

E, F : Banach spaces, T : E — F, continuous, linear, bijective = T~!: continuous.
f: continuous on X <= VF CY closed f~1(F) C X is closed.
Finite unions of closed sets are closed; arbitrary intersections of closed sets are closed.

Infinite intersections of open sets may not be open; infinite unions of closed sets may not be
closed.

Every open set G C R can be written as a countable union of disjoint open intervals.

(X,d): metric space. F' C X: closed <= for every sequence (x,) C X convergent in X, if
T, € F for all n > 1, then lim,,_,o, x,, € F.

(X,d): complete metric space, F C X is a complete metric space (w.r.t. induced metric space)
<= F'is a closed set in X.

Sequential equivalent of closure

A={reX: I(an)n>1 C A an — z}.

Any isometry ¢ : X — Y is injective.

Uniqueness of completion o
(X, d): metric space. If (X1,d1), (X2,dz) are two completions of X, then they are isomorphic.

Equivalence class of Cauchy sequences

() ~ (yn) <= d(zn,yn) = 0,n = ©

Bolzano-Weierstrass Theorem
Every bounded sequence in R™ has a convergent subsequence.

Heine-Borel Theorem
A C R™: sequentially compact <= A: closed, bounded.

Theorem:
(X, d): metric space. X: sequentially compact <= X: complete and totally bounded.

Theorem:
X: metric space. K C X: sequentially compact <= K: compact.

Lemma:
X: metric space, K C X: sequentially compact. If {G,}aer is an open cover of K, then there
exists § > 0 s.t. VA C K, diam(A) < ¢ implies A C G, for some « € I.

A C R™: precompact <= A: bounded.

X: metric space, A C X: precompact <= every sequence in A has a subsequence which
converges to some point in X.

X: metric space, K C X: compact <= K: closed and precompact.
X: complete metric space, A C X: precompact = A: totally bounded.

Theorem:
K: compact metric space, Y: metric space, f : X — Y continuous on K = f(K) C Y: compact.
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2.2

Theorem:
K: compact metric space, Y: metric space, f : X — Y continuous on K = f: uniformly
continuous on K.

Theorem:
K: compact metric space, f : K — R continuous. Then, Jdz,y € K s.t.

f(z) = inf f(2), f(y) = sup f(2).

zeK 2eK

Theorem: (Equivalence of norms)
E: finite dimensional vector space, |||, ||-||': norms. Then, 3¢, C' > 0 s.t.

cllzl < [lz|I” < Ol

Space of Continuous Functions/Contraction Mapping Theorem
Uniform convergence = pointwise convergence.

(X,d): metric space, (fn)n>1 C Cp(X) a sequence. If f,, — f uniformly for some bounded
f: X — R, then f is continuous.

X: compact metric space. Then, C(X) is complete, i.e., a Banach space.
f: R™ — R has compact support <= IR > 0s.t. f(z) =0,Vax € R" with |z| > R.

Ascoli-Arzela thm:

If X: compact metric space, then .# C C(X) is precompact in C(X) iff it is bounded in C(X)
and equicontinuous.

If X: compact metric space, then .# C C(X) is compact in C(X) iff .# is closed, bounded, and
equicontinuous.

f: Lipschitz = f: uniformly continuous (but not vice versa).

C C R™: open, convex, f: C — R continuously differentiable on C.
If the partial derivatives of f and bounded on C, then Vz,y € C,

)= 1) < (supl V1) ) o =

(K,d): compact metric space, M > 0. Then,
Fu ={f € C(K): f Lipschitz on K, Lip(f) < M} is an equicontinuous subset of C(K).
Fr is also closed.

Any bounded family of continuously differentiable functions on C'(K) with bounded derivatives
is precompact in C(K).

If K: compact metric space, g € K, then
By ={f € Fum: flxo) =0}
is a closed bounded subset of .%); and thus compact.

Theorem:
f:(t,u) = f(t,u) continuous on R2. Then, V(tq,uo) € R?, 3I C R an open interval with tq € I

s.t. the IVP
u=f(t u)
U(to) = U

has a solution u € C*(I) on I.

10
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e Suppose f : R? — R is continuous in R = {(¢t,u) : [t — to| < T,|u — up| < L} with |f(¢,
for (t,u) € R? and that u — f(t,u) is Lipschitz uniformly in ¢ in the sense that 3C
|f(t’u) - f(t,v)\ < C|u - v|,V(t,u), (t,’U) € R
Set 0 := min{7T, L/M}. Then, every solution u to u(t) = f(t,u), u(ty) = ug satisfies

u)| <M
> 0 s.t.

|u(t) — up| < L for |t — to| < 0,
and the solution is unique on |t — to| < 0.

e Gronwall’s inequality:
T > 0,u,p € C([0,T]) with u(t) > 0 and ¢(t) > 0,V¢ € [0,T]. Fix ug > 0. If u satisfies

u(t) < ug +/() w(s)u(s)ds, te0,T],

u(t) < o exp ( / tw(s)ds>)

e (X,d): metric space. T : X — X contraction = T": uniformly continuous on X.

then

for0<t<T.

e Banach contraction mapping thm:
(X,d): complete metric space, T : X — X contraction = T has a unique fixed point, i.e., 3z € X
s.t. T(x) = x and there is exactly one such value z.

e Theorem:
f I xR™ — R"™ continuous in ¢, globally Lipshitz «, uniform in ¢, (¢,u) — f(t,u).

{u = f(t,u(t))

u(to) = Ug
I C Rs.t. tg € I. Then, 3! continuously differentiable u solving the IVP.

e Inverse Function Thm:
U C R™: open, f:U — R", continuously differentiable. xo € U s.t. (Df)(zg) € Lin(R™,R"™) is
nonsingular. Then, 3 open sets V' C U containing xg, W C R"™ containing yo = f(z0) and g :
W — Vst g(f(z)) =z forx € V and f(g(y)) =y for y € W. Moreover, Dg(y) = [(Df)(z)] .

e Implicit Function Thm:
m,n > 1, A C R"™ open, F : A — R™ continuously differentiable. If (z¢,y9) € A s.t.
F(z0,y0) = 0 and (DyF)(z0,y0) is invertible, then 3 open sets W C R™, zp € U, V C A C
R (29,90) € V, and G : W — R™ differentiable at zq s.t.

{(z,y) e V: F(z,y) =0} = {(z,G(x)) : x € W}

2.3 Measure and Integration

e Lemma:
F CP(X)= A(F) is a o-algebra.

e Theorem:
X: set, F C P(X), A= A(F), u: A—[0,00] a measure. If there is a countable family (A;)icr
of sets in F s.t. p(A;) < oo, Vi and X = J,.; 4;, then for any measure v : A — [0, 00], if
w(A) =v(A), VA e F, then u=v on A.

icl

e Properties of Borel o-algebra:

1. B(R) is also generated by the collection of open intervals (a,b) C R and the collection of
half-open intervals (a,b] C R.

2. B(R™) is generated by family of rectangles

Q = (al,bl) X (ag,bg) X - X ((ln,bn)

11
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3. B(R™) is not complete w.r.t. the Lebesgue measure.

e Theorem:
A C R™: Lebesgue measurable <= Ve > 0,3F": closed in R", G: open in R" s.t. FC ACG
and A(G\ F) < e.
Moreover, for all such A, A(A) = inf{\(U) : U open, A C U} = sup{A\(K) : K compact, K C A}.

e Properties of Lebesgue measure:
1. Translation invariant: A € Z(R™),h € R"” = A(1,A) = AM(A) with A ={ax + h:x € A}
2. T :R™ — R"” linear
T(A)={Tzx:x € A}, Ac LR") = NT(A)) = |det T|A(4).

e f: X — R continuous = f: measurable w.r.t. B(X).
e (X, A): measurable space. f: X — R, measurable < {z € X : f(z) <c} € A Ve e R.

e (X, A, p): complete measure space. (f)n>1: sequence of measurable functions, f, : X — R s.t.
fn — [ pointwise p-a.e. Then, f is measurable. (Not necessarily continuous.)

e f,g: Lebesgue measurable # f o g: Lebesgue measurable (even if ¢ is continuous).
e f: Borel measurable, g: Lebesgue/Borel measurable = f o g: Lebesgue/Borel measurable.

o (X, A, p): measure space. f : X — [0,00] measurable. Then, 3(¢,)n>1: sequence of simple
functions, pointwise monotone increasing (¢, (z): increasing in n,Vx) and converging pointwise

to f.
b fAfdM:ffoXAdﬂ~

e Egoroff’s Theorem:
(X, A, n): measure space. pu(X) < oo. f, = f a.e., (fn)n>1, f: measurable functions. Then,
Ve >0, 3B € A with u(X \ B) < ¢ s.t. f, — f uniformly on B.

e Lemma:
(X, A, p): measure space. (4;);>1 increasing sequence of measurable sets (4; C A;4+1,Vi). Then,

1 (U A¢> = lim p(A;)

e Lusin’s Theorem:
f :[a,b] — R, Lebesgue measurable, € > 0. Then, 3E C [a,b] compact s.t. u([a,b] \ E) < ¢ and
f|E is continuous.

e Littlewood’s 3 principles of measure theory on R:
1. Every measurable set is nearly a finite sum (union) of intervals.
2. Every LP function is nearly continuous.
3. Every pointwise convergent sequence of functions is nearly uniformly convergent.

e Monotone Convergence Theorem (MCT):
(X, A, n): measure space. (f,)n>1: & sequence of nonnegative measurable functions s.t. f,(z) <
fot1(z), Vo € X,Vn > 1. Then,

/ lim f,(x)du = hm / fulz
X’Vl*)OO
e Fatou’s Lemma:

(X, A, p): measure space. (f,)n>1: sequence of measurable functions, f, : X — R, fu(z) >
0,Vz € X. Then,

/ liminf £, (z)dy < liminf f( )dp
X

n— oo n— oo
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e Lebesgue’s Dominated Convergence Theorem (LDCT):
(X, A, p): measure space. (fn)n>1: sequence of measurable functions f, — f a.e. for some
measurable f. If 3¢ integrable s.t. |f,(x)] < g(z) for a.e. € X, then

/fdu: lim fndp.
X n—oo X

e Differentiation under integral sign: B
(X, A, u): complete measure space. I C R: open. f: X x I — R, measurable. If

(i) f(-,t) integrable (on X), Vt € I,

(i1) f(z,-) differentiable (in t) for a.e. € X, and
(i) 3¢ : X — [0,00] s.t. VEt € I, |01 f(z,1)] < g(x) for ae. z € X,
then t — [y f(z,t)du(x) is differentiable in ¢ with derivative

G [ i = [ S i)
e Fact:

(X, A ), (Y,B,v): o-finite measure spaces. Then, 3! measure p®v on ARBs.t. VA€ A B € B,
(1@ v)(A x B) = p(A)u(B).

¢ Fubini/Tonelli: B
(X, A ), (Y,B,v) o-finite measure spaces. f : X XY — R, A ® B-measurable. Then, f is

1 ® v-integrable <=
[ [t lavwutz) <
XJY

either
//ummwww@<m
Y JX

Moreover, if f is u ® v-integrable, then
| temansr= [ [ reaimae = [ [ e
XXY
e Theorem:

(X, A, 1): measure space. 1 < p < oo. Then, LP(X) is a Banach space.

or

e Properties of LP convergence:
1. Convergence in LP does not imply convergence a.e.
2. fn— fin L? = f, — f in measure, i.e., Ve >0, u({x:|fu(z)— f(z)| >} —- 0asn — 0.

e Proposition:
fn — f in measure = 3(fp, )k>1 s.t. fn, = f ae.
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