STAT31440 Applied Analysis

Notes for Exam Preparations

Seung Chul Lee

A Note of Caution:

These notes are created solely for my personal use and do not accurately represent the pedagogy or the material covered for the course named above. I have taken this class during Fall 2022, which may or may not have identical structure in future quarters. All errors contained are my own.

Contents

1	Definitions	1
	1.1 Metric Space	1
	1.2 Space of Continuous Functions/Contraction Mapping Theorem	4
	1.3 Measure and Integration	5
2	Useful Facts 2.1 Metric Space 2.2 Space of Continuous Functions/Contraction Mapping Theorem 2.3 Measure and Integration	8 8 10 11

1 Definitions

1.1 Metric Space

• lim sup/lim inf of sets

$$\limsup_{i \to \infty} A_i = \bigcap_{j=1}^{\infty} \left(\bigcup_{i=j}^{\infty} A_i \right), \quad \liminf_{i \to \infty} A_i = \bigcup_{j=1}^{\infty} \left(\bigcap_{i=j}^{\infty} A_i \right)$$

• Metric space

A metric space (X, d) consists of a non-empty set $X, d: X \times X \to [0, \infty)$ s.t.

- 1. $d(x, y) = d(y, x), \forall x, y \in X$ (symmetry)
- 2. $d(x,y) = 0 \Rightarrow x = y, \forall x, y \in X.$
- 3. $d(x,z) \le d(x,y) + d(y,z), \forall x, y, z \in X$ (triangle inequality).
- Diameter

(X,d): metric space, $A \subset X$, then

diam
$$A := \begin{cases} \sup_{x,y \in A} d(x,y) & , A \neq \phi \\ 0 & , A = \phi \end{cases}$$

and we say A is bounded if diam $A < \infty$.

• Normed linear space

Let E be a vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . We say that E is a normed linear space if $\exists \| \cdot \| : E \to [0, \infty)$ s.t.

- 1. $||x|| = 0 \iff x = 0 \in E, \forall x \in E.$
- 2. $\|\alpha x\| = |\alpha| \|x\|, \forall x \in E, \alpha \in \mathbb{F}.$
- 3. $||x + y|| \le ||x|| + ||y||, \forall x, y \in E.$
- ℓ^p space

$$\ell^{p}(\mathbb{N}^{*}) := \left\{ (x_{1}, \dots, x_{n}, \dots) : x_{i} \in \mathbb{R}, \forall i \text{ and } \left(\sum_{i=1}^{\infty} |x_{i}|^{p} \right)^{\frac{1}{p}} < \infty \right\}$$

• *p*-norm

$$||x||_p := \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}$$

- Convergence of sequences $(x_i)_{i\geq 1} \subset X$, a sequence, converges to $x_* \in X$ if $\forall \varepsilon > 0, \exists n \ge 1$ s.t. $\forall i \ge n, d(x_i, x_*) < \varepsilon$.
- Cauchy sequence $(x_i) \subset X$ a sequence in X is a Cauchy sequence if for all $\varepsilon > 0$, $\exists m \ge 1$ for all $i, j \ge m$, $d(x_i, x_j) < \varepsilon$.
- Complete metric space A metric space (X, d) is complete if every Cauchy sequence in X converges in X.
- Banach space
 If a normed linear space E is complete w.r.t. the metric d(x, y) = ||x − y||, then (E, ||·||) is called a Banach space.
- Convergence of series If $(S_n)_{n\geq 1}$ defined as $S_n := \sum_{i=1}^n x_i$ converges to $s \in \mathbb{R}$, $\sum_{i=1}^\infty x_i$ is said to converge to s.
- Absolute convergence of series $\sum_{i=1}^{\infty} x_i$ is said to be absolutely convergent if $\sum_{i=1}^{\infty} |x_i|$ converges in \mathbb{R} .
- Upper/lower bound $A \subset \mathbb{R}$ has an upper bound $M \in \mathbb{R}$, lower bound $L \in \mathbb{R}$ if $x \in A \Rightarrow x \leq M$, $x \in A \Rightarrow x \geq L$ and A is said to be bounded from above (below) if such an M(L) exists.
- Supremum/infimum

An upper bound M for a set $A \subset \mathbb{R}$ is a least upper bound (supremum) if $M \leq M'$ for all upper bounds M' of A. Similarly, a lower bound L of a set $A \subset \mathbb{R}$ is a greatest lower bound (infimum) if $L \geq L'$ for all lower bounds L' of A.

• $\limsup / \lim inf$

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \sup\{x_k : k \ge n\} = \inf\{\sup\{x_k : k \ge n\} : n \ge 1\}$$
$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \inf\{x_k : k \ge n\} = \sup\{\inf\{x_k : k \ge n\} : n \ge 1\}$$

• Continuity

 $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ if $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $\forall x \in \mathbb{R}, |x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$.

• Uniform continuity

 $f: X \to Y$ is uniformly continuous on X if $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $\forall x, y \in X, d(x, y) < \delta$ implies $d(f(x), f(y)) < \varepsilon$.

- Sequential continuity X, Y: metric spaces. $f: X \to Y$ is sequentially continuous at $x \in X$ if $\forall (x_n)_{n \ge 1} \subset X$ s.t. $x_n \to x$ as $n \to \infty$, the sequence $(f(x_n))_{n \ge 1}$ converges to $f(x) \in Y$ as $n \to \infty$.
- Upper/Lower semicontinuity A function $f: X \to \mathbb{R}$ is upper semicontinuous on X if $\forall (x_n)_{n\geq 1} \subset X$ such that $x_n \to x$ for some $x \in X$ implies $f(x) \geq \limsup_{n \to \infty} f(x_n)$. Similarly, $f: X \to \mathbb{R}$ is lower semicontinuous on X if $\forall (x_n)_{n\geq 1} \subset X$, $x_n \to x, x \in X$ implies $f(x) \leq \liminf_{n \to \infty} f(x_n)$.
- Open/Closed ball The open ball $B_r(x) = B(x;r)$ is the set $B_r(x) := \{y \in X : d(x,y) < r\}$ and closed ball $\overline{B_r}(x) := \{y \in X : d(x,y) \le r\}.$
- Open/Closed sets $G \subset X$ is an open set if for every $x \in G$, $\exists r > 0$ s.t. $B_r(x) \subset G$. A set $F \subset X$ is closed in X if $X \setminus F$ is open.
- Topology on a set

 τ is a topology on X if the family τ of open subsets of X satisfies

- 1. $\phi, X \in \tau$.
- 2. $A, B \in \tau \Rightarrow A \cap B \in \tau$.
- 3. $\{A_i : i \in I \text{ an arbitrary family of elements of } \tau\} \Rightarrow \bigcup_{i \in I} A_i \in \tau.$

X equipped with τ is called a topological space.

• Convergence in topological space

 $(x_n)_{n\geq 1} \subset X$ converges to $x \in X$ for a topological space (X, τ) if for all $A \in \tau$ with $x \in A$, $\exists N \geq 1$ s.t. $\forall n \geq N, x_n \in A$.

• Measure zero (child's version)

 $A \subset \mathbb{R}$ is said to have measure zero if for every $\varepsilon > 0$ there is a countable collection of open intervals (I_n) s.t. $A \subset \bigcup_{n=1}^{\infty} I_n$ and $\sum_{i=1}^{\infty} length(I_n) < \varepsilon$.

• Closure

The closure of a set A in a metric (or topological) space X is

$$\overline{A} = \bigcap_{A \subset F \subset X, F: \text{closed}} F$$

which is the smallest closed set containing A.

- Dense in a metric space
 - (X,d): metric space. $A \subset X$ is dense in X if $\overline{A} = X$.
- Separable (X, d): metric space is separable if X contains a countable dense subset.
- Isometry/Isomorphism X, Y: metric space. $i: X \to Y$ is an isometry if

$$d(i(x_1), i(x_2)) = d(x_1, x_2), \forall x_1, x_2 \in X.$$

If i is an isometry that is surjective (onto), it is a (metric space) isomorphism.

- Completion of a metric space
 Given metric space (X, d), another metric space (X, d̃) is a completion of X if
 - 1. $\exists i : X \to \tilde{X}$ an isometry.
 - 2. i(X) is dense in \tilde{X} .
 - 3. (\tilde{X}, \tilde{d}) is complete.

• Equivalence relation

A relation \sim defines an equivalence relation if it is

- 1. reflexive: $a \sim a, \forall a$
- 2. symmetric: $a \sim b \iff b \sim a, \forall a, b$
- 3. transitive: $a \sim b, b \sim c \Rightarrow a \sim c, \forall a, b, c$
- Sequential compactness

X: metric space. $K \subset X$ is sequentially compact if every sequence in K has a subsequence which converges to a point in K.

• Open cover X: metric space, $A \subset X$. A collection $\{G_{\alpha}\}_{\alpha \in I}$ of subsets of X is said to cover A if

$$A \subset \bigcup_{\alpha \in I} G_{\alpha}$$

If every G_{α} is open, we say $\{G_{\alpha}\}$ is an open cover of A.

• ε -net

For $\varepsilon > 0$ and $A \subset X$, a subset $E = \{x_{\alpha} : \alpha \in I\}$, with I: arbitrary index set, is a ε -net for A if $\{B_{\varepsilon}(x_{\alpha}) : \alpha \in I\}$ is an open cover of A, i.e., $A \subset \bigcup_{\alpha \in I} B_{\varepsilon}(x_{\alpha})$. If I is finite and E is an ε -net, then E is a finite ε -net.

- Totally bounded
 X: metric space. A ⊂ X is totally bounded if for every ε > 0 there exists a finite ε-net for A.
- Compactness X: metric space. $K \subset X$ is compact if every open cover of K has a finite subcover.
- Precompact:
 X: metric space. A ⊂ X is precompact if A is compact.

1.2 Space of Continuous Functions/Contraction Mapping Theorem

- Some subspaces:
 - -C(X): space of real-valued continuous functions in X.
 - $-C_b(X)$: space of real-valued bounded continuous functions in X.
 - $-C_c(X)$: space of real-valued continuous functions in X with compact support, i.e.,

 $C_c(X) := \{ f : X \to \mathbb{R} : f \in C(X), \text{ supp } f \subset X : \text{ compact} \}$

 $- C_0(X)$: closure of $C_c(X)$ in $C_b(X)$.

$$C_c(X) \subseteq C_0(X) \subseteq C_b(X) \subseteq C(X)$$

with equality if X: compact.

- Pointwise convergence: $f_n \to f$ pointwise as $n \to \infty$ if for all $x \in X$, $f_n(x) \to f(x)$ (in \mathbb{R}) as $n \to \infty$.
- Uniform norm: Uniform norm $\|\cdot\|_{\infty}$ is a norm defined on $C_b(X)$ as

$$||f||_{\infty} = \sup_{x \in X} |f(x)|$$

and convergence in the uniform norm is called uniform convergence.

- Equicontinuity:
- X: metric space. A family \mathscr{F} of functions in C(X) is equicontinuous if $\forall x \in X, \varepsilon > 0, \exists \delta > 0$ s.t. $\forall y \in X, d(x, y) < \delta$ implies $|f(x) - f(y)| < \varepsilon$ for all $f \in \mathscr{F}$.

• Lipschitz continuity:

(X,d): metric space. $f: X \to \mathbb{R}$ is said to be Lipschitz continuous on X if $\exists L > 0$ s.t. $|f(x) - f(y)| \le L \cdot d(x,y), \forall x, y \in X.$

• Lipschitz constant:

$$\operatorname{Lip}(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)} = \inf\{C : |f(x) - f(y)| \le C \cdot d(x, y), \forall x, y \in X\}$$

• Space of continuously differentiable functions:

$$C^{1}(X) = \{ f \in C(X) : f' \text{ is continuous on } X \}.$$

• ODE IVP Solution:

$$(*) \begin{cases} \frac{d}{dt}u(t) = f(t, u(t)), t \ge 0\\ u(0) = u_0 \end{cases}$$

A solution to (*) is a function $u \in C^1(I)$, $I \subset \mathbb{R}$ open with $0 \in I$ s.t. $\dot{u}(t) = f(t, u(t))$, $\forall t \in I$.

• Contraction: (X, d): metric space. A map $T: X \to X$ is a contraction if $\exists 0 \le c < 1$ s.t.

$$d(T(x), T(y)) \le C \cdot d(x, y), \ \forall x, y \in X.$$

- Bounded linear map: A linear map $A: X \to Y$ is bounded if $\exists c > 0$ s.t. $||Ax|| \le c ||x||, \forall x \in X$.
- Differentiable: X, Y: Banach spaces, $f: X \to Y$. f is differentiable at $x \in X$ if $\exists f': X \to Y$ linear bounded map s.t.

$$f(x + \varepsilon h) = f(x) + \varepsilon f'(x)h + o(\varepsilon)$$

as $\varepsilon \to 0$.

1.3 Measure and Integration

• σ -algebra:

A σ -algebra on a set X is a collection \mathcal{A} of subsets of X s.t.

- 1. $\phi \in \mathcal{A}$
- 2. $A \in \mathcal{A} \Rightarrow A^c = X \setminus A \in \mathcal{A}$
- 3. If $(A_i)_{i \in I}$ is a countable family of sets in \mathcal{A} , then $\bigcup_{i \in I} A_i \in \mathcal{A}$.
- Measurable space:

A set X with a σ -algebra \mathcal{A} on X is a measurable space. The elements of \mathcal{A} are measurable sets.

• Measure:

 (X, \mathcal{A}) : measurable space. A measure on (X, \mathcal{A}) is a map $\mu : \mathcal{A} \to [0, \infty]$ s.t.

- 1. $\mu(\phi) = 0$
- 2. If $(A_i)_{i \in I}$ is a countable family of pairwise disjoint sets in \mathcal{A} , then

$$\mu\left(\bigcup_{i\in I}A_i\right) = \sum_{i\in I}\mu(A_i)$$

• Finite $/\sigma$ -finite measures:

 μ is finite if $\mu(X) < \infty$, and σ -finite if $\exists A_1, A_2, \dots$ s.t.

$$X = \bigcup_{i=1}^{\infty} A_i$$

with $\mu(A_i) < \infty, \quad \forall i = 1, 2, \dots$

- Measure space: (X, \mathcal{A}, μ) is a measure space with \mathcal{A} a σ -algebra on X and $\mu : \mathcal{A} \to [0, \infty]$ a measure.
- Generated σ -algebra: Given $\mathcal{F} \subset \mathcal{P}(X)$, the σ -algebra generated by \mathcal{F} , $\mathcal{A}(\mathcal{F})$, is the intersection of all σ -algebras containing \mathcal{F} . This is the smallest σ -algebra that contains \mathcal{F} .
- Borel σ -algebra: (X, τ): topological space. The Borel σ -algebra, denoted $\mathcal{B}(X)$, is $\mathcal{A}(\tau)$, the σ -algebra generated by the collection of open sets.
- Counting measure: X: any set, $\mathcal{A} = \mathcal{P}(X)$, the counting measure ν is given by $\nu : \mathcal{P} \to [0, \infty], \nu(A) = \#A$ (i.e., the number of elements) for $A \subset X$.
- Dirac delta measure: Given $x_0 \in \mathbb{R}^n$, the Dirac delta measure

$$\delta_{x_0}: \mathcal{B}(\mathbb{R}^n) \to [0,\infty], \ \delta_{x_0}(A) = \begin{cases} 0, & \text{if } x_0 \notin A \\ 1, & \text{if } x_0 \in A \end{cases}$$

• Lebesgue measure: The unique measure λ on $\mathcal{B}(\mathbb{R}^n)$ satisfying

$$\lambda((a_1, b_1) \times \cdots \times (a_n, b_n)) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$$

is the Lebesgue measure on $\mathcal{B}(\mathbb{R}^n)$.

- Complete measure space:
 (X, A, μ), a measure space, is complete if every subset of a set of measure zero is measurable.
- Lebesgue measurable sets: The class $\mathscr{L}(\mathbb{R}^n)$ of Lebesgue measurable sets is the completion of $\mathcal{B}(\mathbb{R}^n)$ w.r.t. the Lebesgue measure.
- Measure zero: (X, \mathcal{A}, μ) : measure space. $A \subset X$ has measure zero if $A \in \mathcal{A}$ and $\mu(A) = 0$.
- Almost everywhere (a.e.): A property that holds except on a set of measure zero is said to hold almost everywhere (a.e.).
- Essential supremum: ess sup $A = \inf\{C : \exists N \subset \mathbb{R} \text{ measure zero s.t. } x \leq c, \forall x \in A \setminus N\}.$
- Equality a.e. of functions: (X, \mathcal{A}, μ) : measure space. f, g: measurable functions. f and g are equal a.e. w.r.t. μ if $\mu (\{x \in X : f(x) \neq g(x)\}) = 0.$
- Measurable function (w.r.t. measurable spaces): (X, \mathcal{A}), (Y, \mathcal{B}): measurable spaces, $f : X \to Y$ is (X, \mathcal{A})–(Y, \mathcal{B}) measurable if $f^{-1}(B) \in \mathcal{A}$, $\forall B \in \mathcal{B}$.
- Extended real line: $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ with conventions $0 \cdot \infty = 0 \cdot (-\infty) = 0$.
- Measure preserving: $T: X \to X$ measurable, (X, \mathcal{A}, μ) : measure space. T is measure preserving if

$$\mu(T^{-1}(A)) = \mu(A), \forall A \in \mathcal{A}.$$

• Measurable function:

 $f: X \to \mathbb{R} \text{ (or } \overline{\mathbb{R}}) \text{ is measurable if it is } (X, \mathcal{A}, \mu) - (\mathbb{R}, \mathcal{B}(\mathbb{R})) \text{ measurable.}$

• Characteristic (or indicator) function: (X, \mathcal{A}) : measurable space, $A \in \mathcal{A}$,

$$\chi_A(x) = \begin{cases} 0, & x \notin A \\ 1, & x \in A \end{cases}$$

• Simple function: $\varphi: X \to \mathbb{R}$ written as

$$\varphi = \sum_{i=1}^{n} c_i \chi_{A_i}$$

for $c_1, \ldots, c_n \in \mathbb{R}, A_1, \ldots, A_n \in \mathcal{A}$ is a simple function.

• Partitioning a function: $f: X \to \overline{\mathbb{R}}$, measurable.

$$f = f_{+} - f_{-}$$
, where $f_{+} = \max\{f, 0\}, f_{-} = -\min\{f, 0\}$

• Lebesgue integral (of a simple function): (X, \mathcal{A}, μ) : measure space. For $\varphi : X \to \overline{\mathbb{R}}$, a simple measurable function, $\varphi = \sum_{i=1}^{n} c_i \chi_{A_i}$, the Lebesgue integral is

$$\int \varphi d\mu = \sum_{i=1}^n c_i \mu(A_i)$$

• Lebesgue integral (of a general function): (X, \mathcal{A}, μ) : measure space. $f : X \to [0, \infty]$ measurable.

$$\int f d\mu = \sup \left\{ \int \varphi d\mu : \varphi \text{ simple with } \varphi \leq f \right\}$$

• Integrable:

A function f is integrable (summable) if $\int |f| d\mu < \infty$.

- Product σ -algebra: (X, A), (Y, B): measurable spaces. The product σ -algebra $A \otimes B$ is the σ -algebra generated by the collection of sets $\xi = \{A \times B : A \in A, B \in B\}$.
- L^p space:

 (X, \mathcal{A}, μ) : measure space. $1 \leq p < \infty$.

$$L^{p}(X) = \left\{ \text{equivalence classes of functions } f: X \to \mathbb{C} : \int |f|^{p} d\mu < \infty \right\}$$

Also,

$$L^{\infty}(X) = \left\{ \text{equivalence classes of functions } f: X \to \mathbb{C} : \underset{x \in X}{\text{ess sup}} |f(x)| < \infty \right\}$$

• L^p norm:

For $1 \leq p < \infty$,

$$||f||_{L^p(X)} = \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}$$

For $p = \infty$,

$$||f||_{L^{\infty}(X)} = \operatorname{ess\,sup}_{x \in X} |f(x)|$$

2 Useful Facts

2.1 Metric Space

• Cauchy-Schwarz inequality

$$x \cdot y \le \|x\| \|y\|$$

• $(X, d_X), (Y, d_Y)$: two metric spaces $\Rightarrow X \times Y$ is also a metric space with product metric defined as

$$d(u, v) = d_X(u_X, v_X) + d_Y(u_Y, v_Y), u = (u_X, u_Y) \in X \times Y, v = (v_X, v_Y) \in X \times Y$$

- If E: normed linear space, then E is a metric space with $d(x, y) = ||x y||, \forall x, y \in E$, i.e., the norm-induced metric.
- E: normed linear space, $(x_n)_{n\geq 1}$: a sequence in E. If $x_n \to x \in E$ for some $x \in E$, then

$$\lim_{n \to \infty} \|x_n\| = \|x\|$$

i.e., $\|\cdot\|$ is continuous on E.

• Hölder's inequality (in \mathbb{R}^n) $x, y \in \mathbb{R}^n, 1 \le p < \infty, 1 \le q < \infty, \frac{1}{p} + \frac{1}{q} = 1$ (conjugate exponents). Then,

$$\sum_{j=1}^{n} |x_j y_j| \le ||x||_p ||y||_q.$$

- (x_n) : Cauchy $\Rightarrow (x_n)$: bounded.
- (x_n) : converges \Rightarrow (x_n) : Cauchy.
- A normed linear space may be equipped with multiple different norms.
- $\sum x_n$: absolutely convergent $\Rightarrow \sum x_n$: convergent
- In $\mathbb R$ or a Banach space:

$$\sum x_i \to s \iff \forall \varepsilon > 0, \exists N \ge 1 \text{ s.t. } |x_{n+1} + \dots + x_{n+p}| < \varepsilon, \forall n \ge N, p \ge 1$$

(a version of Cauchy criterion).

- Existence of inf/sup for bounded sets $A \subset \mathbb{R} \iff$ completeness of \mathbb{R} .
- \liminf , \limsup always defined for sequences in \mathbb{R} .

$$\liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n$$

•

$$x_n \to x \iff \liminf_{n \to \infty} = \limsup_{n \to \infty} = x$$

- [a, b]: closed, bounded interval in \mathbb{R} , f: continuous on $[a, b] \Rightarrow f$: uniformly continuous on [a, b].
- $f: \mathbb{R}^n \to \mathbb{R}^n$ is affine if

$$f(tx + (1 - t)y) = tf(x) + (1 - t)f(y), \ \forall x, y \in \mathbb{R}^n, 0 \le t \le 1$$

Every affine function is uniformly continuous on \mathbb{R}^n and can be written as $f: x \mapsto Ax + b$ for $A \in \operatorname{Lin}(\mathbb{R}^n, \mathbb{R}^n), b \in \mathbb{R}^n$.

• X, Y: metric spaces. $f: X \to Y, x \in X, f$: continuous at $x \Rightarrow f$: sequentially continuous at x.

- f: continuous on $X \iff f$: both upper and lower semicontinuous.
- X, Y: metric spaces, $f: X \to Y$, continuous on $X \iff$ for every $G \subset Y$ open, $f^{-1}(G)$ is open in X.
- Open mapping theorem E, F: Banach spaces, $T: E \to F$, continuous, linear, surjective $\Rightarrow T$: open map, i.e., maps open sets to open sets.
- E, F: Banach spaces, $T: E \to F$, continuous, linear, bijective $\Rightarrow T^{-1}$: continuous.
- f: continuous on $X \iff \forall F \subset Y$ closed $f^{-1}(F) \subset X$ is closed.
- Finite unions of closed sets are closed; arbitrary intersections of closed sets are closed.
- Infinite intersections of open sets may not be open; infinite unions of closed sets may not be closed.
- Every open set $G \subset \mathbb{R}$ can be written as a countable union of disjoint open intervals.
- (X, d): metric space. $F \subset X$: closed \iff for every sequence $(x_n) \subset X$ convergent in X, if $x_n \in F$ for all $n \ge 1$, then $\lim_{n \to \infty} x_n \in F$.
- (X, d): complete metric space, $F \subset X$ is a complete metric space (w.r.t. induced metric space) $\iff F$ is a closed set in X.
- Sequential equivalent of closure

$$\overline{A} = \{ x \in X : \exists (a_n)_{n \ge 1} \subset A, a_n \to x \}.$$

- Any isometry $i: X \to Y$ is injective.
- Equivalence class of Cauchy sequences

$$(x_n) \sim (y_n) \iff d(x_n, y_n) \to 0, n \to \infty$$

- Bolzano-Weierstrass Theorem Every bounded sequence in \mathbb{R}^n has a convergent subsequence.
- Heine-Borel Theorem $A \subset \mathbb{R}^n$: sequentially compact $\iff A$: closed, bounded.
- Theorem: (X,d): metric space. X: sequentially compact $\iff X$: complete and totally bounded.
- Theorem: X: metric space. $K \subset X$: sequentially compact $\iff K$: compact.
- Lemma: X: metric space, $K \subset X$: sequentially compact. If $\{G_{\alpha}\}_{\alpha \in I}$ is an open cover of K, then there exists $\delta > 0$ s.t. $\forall A \subset K$, diam $(A) \leq \delta$ implies $A \subset G_{\alpha}$ for some $\alpha \in I$.
- $A \subset \mathbb{R}^n$: precompact $\iff A$: bounded.
- X: metric space, $A \subset X$: precompact \iff every sequence in A has a subsequence which converges to some point in X.
- X: metric space, $K \subset X$: compact $\iff K$: closed and precompact.
- X: complete metric space, $A \subset X$: precompact $\Rightarrow A$: totally bounded.
- Theorem: *K*: compact metric space, *Y*: metric space, $f: X \to Y$ continuous on $K \Rightarrow f(K) \subset Y$: compact.

• Theorem:

 $K\colon$ compact metric space, $Y\colon$ metric space, $f:X\to Y$ continuous on $K\Rightarrow f\colon$ uniformly continuous on K.

• Theorem: K: compact metric space, $f: K \to \mathbb{R}$ continuous. Then, $\exists x, y \in K$ s.t.

$$f(x) = \inf_{z \in K} f(z), f(y) = \sup_{z \in K} f(z).$$

• Theorem: (Equivalence of norms) E: finite dimensional vector space, $\|\cdot\|, \|\cdot\|'$: norms. Then, $\exists c, C > 0$ s.t.

$$c||x|| \le ||x||' \le C||x||$$

2.2 Space of Continuous Functions/Contraction Mapping Theorem

- Uniform convergence \Rightarrow pointwise convergence.
- (X,d): metric space, $(f_n)_{n\geq 1} \subset C_b(X)$ a sequence. If $f_n \to f$ uniformly for some bounded $f: X \to \mathbb{R}$, then f is continuous.
- X: compact metric space. Then, C(X) is complete, i.e., a Banach space.
- $f: \mathbb{R}^n \to \mathbb{R}$ has compact support $\iff \exists R > 0 \text{ s.t. } f(x) = 0, \forall x \in \mathbb{R}^n \text{ with } |x| > R.$
- Ascoli-Arzela thm:

If X: compact metric space, then $\mathscr{F} \subset C(X)$ is precompact in C(X) iff it is bounded in C(X) and equicontinuous.

If X: compact metric space, then $\mathscr{F} \subset C(X)$ is compact in C(X) iff \mathscr{F} is closed, bounded, and equicontinuous.

- f: Lipschitz \Rightarrow f: uniformly continuous (but not vice versa).
- $C \subset \mathbb{R}^n$: open, convex, $f : C \to \mathbb{R}$ continuously differentiable on C. If the partial derivatives of f and bounded on C, then $\forall x, y \in C$,

$$|f(x) - f(y)| \le \left(\sup_{y \in C} |\nabla f(x)|\right) |x - y|$$

- (K, d): compact metric space, M > 0. Then, $\mathscr{F}_M = \{f \in C(K) : f \text{ Lipschitz on } K, \text{ Lip}(f) \leq M\}$ is an equicontinuous subset of C(K). \mathscr{F}_M is also closed.
- Any bounded family of continuously differentiable functions on C(K) with bounded derivatives is precompact in C(K).
- If K: compact metric space, $x_0 \in K$, then

$$\mathscr{B}_M = \{ f \in \mathscr{F}_M : f(x_0) = 0 \}$$

is a closed bounded subset of \mathscr{F}_M and thus compact.

• Theorem:

 $f:(t,u)\mapsto f(t,u)$ continuous on \mathbb{R}^2 . Then, $\forall (t_0,u_0)\in\mathbb{R}^2$, $\exists I\subset\mathbb{R}$ an open interval with $t_0\in I$ s.t. the IVP

$$\begin{cases} \dot{u} = f(t, u) \\ u(t_0) = u_0 \end{cases}$$

has a solution $u \in C^1(I)$ on I.

• Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous in $R = \{(t, u) : |t - t_0| \le T, |u - u_0| \le L\}$ with $|f(t, u)| \le M$ for $(t, u) \in \mathbb{R}^2$, and that $u \mapsto f(t, u)$ is Lipschitz uniformly in t in the sense that $\exists C > 0$ s.t. $|f(t, u) - f(t, v)| \le C|u - v|, \forall (t, u), (t, v) \in R$. Set $\delta := \min\{T, L/M\}$. Then, every solution u to $\dot{u}(t) = f(t, u), u(t_0) = u_0$ satisfies

$$|u(t) - u_0| \le L$$
 for $|t - t_0| < \delta$,

and the solution is unique on $|t - t_0| < \delta$.

• Gronwall's inequality: $T > 0, u, \varphi \in C([0,T])$ with $u(t) \ge 0$ and $\varphi(t) \ge 0, \forall t \in [0,T]$. Fix $u_0 \ge 0$. If u satisfies

$$u(t)\leq u_0+\int_0^t\varphi(s)u(s)ds,\ t\in[0,T],$$

then

$$u(t) \le u_0 \exp\left(\int_0^t \varphi(s) ds\right)$$

for $0 \le t \le T$.

- (X,d): metric space. $T: X \to X$ contraction $\Rightarrow T$: uniformly continuous on X.
- Banach contraction mapping thm:

(X, d): complete metric space, $T: X \to X$ contraction $\Rightarrow T$ has a unique fixed point, i.e., $\exists x \in X$ s.t. T(x) = x and there is exactly one such value x.

• Theorem:

 $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ continuous in t, globally Lipshitz u, uniform in t, $(t, u) \mapsto f(t, u)$.

$$\begin{cases} \dot{u} = f(t, u(t)) \\ u(t_0) = u_0 \end{cases}$$

 $I \subset \mathbb{R}$ s.t. $t_0 \in I$. Then, \exists ! continuously differentiable u solving the IVP.

• Inverse Function Thm:

 $U \subset \mathbb{R}^n$: open, $f: U \to \mathbb{R}^n$, continuously differentiable. $x_0 \in U$ s.t. $(Df)(x_0) \in \operatorname{Lin}(\mathbb{R}^n, \mathbb{R}^n)$ is nonsingular. Then, \exists open sets $V \subset U$ containing $x_0, W \subset \mathbb{R}^n$ containing $y_0 = f(x_0)$ and $g: W \to V$ s.t. g(f(x)) = x for $x \in V$ and f(g(y)) = y for $y \in W$. Moreover, $Dg(y) = [(Df)(x)]^{-1}$.

• Implicit Function Thm:

 $m, n \geq 1, A \subset \mathbb{R}^{n+m}$ open, $F : A \to \mathbb{R}^m$ continuously differentiable. If $(x_0, y_0) \in A$ s.t. $F(x_0, y_0) = 0$ and $(D_y F)(x_0, y_0)$ is invertible, then \exists open sets $W \subset \mathbb{R}^n, x_0 \in U, V \subset A \subset \mathbb{R}^{n+m}, (x_0, y_0) \in V$, and $G : W \to \mathbb{R}^m$ differentiable at x_0 s.t.

$$\{(x,y) \in V : F(x,y) = 0\} = \{(x,G(x)) : x \in W\}$$

2.3 Measure and Integration

• Lemma:

 $\mathcal{F} \subset \mathcal{P}(X) \Rightarrow \mathcal{A}(\mathcal{F})$ is a σ -algebra.

• Theorem:

X: set, $\mathcal{F} \subset \mathcal{P}(X)$, $\mathcal{A} = \mathcal{A}(\mathcal{F})$, $\mu : \mathcal{A} \to [0, \infty]$ a measure. If there is a countable family $(A_i)_{i \in I}$ of sets in \mathcal{F} s.t. $\mu(A_i) < \infty$, $\forall i$ and $X = \bigcup_{i \in I} A_i$, then for any measure $\nu : \mathcal{A} \to [0, \infty]$, if $\mu(A) = \nu(A)$, $\forall A \in \mathcal{F}$, then $\mu = \nu$ on \mathcal{A} .

- Properties of Borel σ -algebra:
 - 1. $\mathcal{B}(\mathbb{R})$ is also generated by the collection of open intervals $(a, b) \subset \mathbb{R}$ and the collection of half-open intervals $(a, b] \subset \mathbb{R}$.
 - 2. $\mathcal{B}(\mathbb{R}^n)$ is generated by family of rectangles

$$Q = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$$

- 3. $\mathcal{B}(\mathbb{R}^n)$ is not complete w.r.t. the Lebesgue measure.
- Theorem: $A \subset \mathbb{R}^n$: Lebesgue measurable $\iff \forall \varepsilon > 0, \exists F$: closed in \mathbb{R}^n, G : open in \mathbb{R}^n s.t. $F \subset A \subset G$ and $\lambda(G \setminus F) < \varepsilon$.
 - Moreover, for all such A, $\lambda(A) = \inf\{\lambda(U) : U \text{ open}, A \subset U\} = \sup\{\lambda(K) : K \text{ compact}, K \subset A\}.$
- Properties of Lebesgue measure:

1. Translation invariant: $A \in \mathscr{L}(\mathbb{R}^n), h \in \mathbb{R}^n \Rightarrow \lambda(\tau_h A) = \lambda(A)$ with $\tau_h A = \{x + h : x \in A\}$.

2. $T:\mathbb{R}^n\to\mathbb{R}^n$ linear

$$T(A)=\{Tx:x\in A\},\ A\in \mathscr{L}(\mathbb{R}^n)\Rightarrow \lambda(T(A))=|{\rm det}\,T|\lambda(A).$$

- $f: X \to \overline{\mathbb{R}}$ continuous $\Rightarrow f$: measurable w.r.t. $\mathcal{B}(X)$.
- (X, \mathcal{A}) : measurable space. $f: X \to \overline{\mathbb{R}}$, measurable $\iff \{x \in X : f(x) < c\} \in \mathcal{A}, \forall c \in \mathbb{R}.$
- (X, \mathcal{A}, μ) : complete measure space. $(f_n)_{n \geq 1}$: sequence of measurable functions, $f_n : X \to \overline{\mathbb{R}}$ s.t. $f_n \to f$ pointwise μ -a.e. Then, f is measurable. (Not necessarily continuous.)
- f, g: Lebesgue measurable $\neq f \circ g$: Lebesgue measurable (even if g is continuous).
- f: Borel measurable, g: Lebesgue/Borel measurable $\Rightarrow f \circ g$: Lebesgue/Borel measurable.
- (X, \mathcal{A}, μ) : measure space. $f : X \to [0, \infty]$ measurable. Then, $\exists (\varphi_n)_{n \geq 1}$: sequence of simple functions, pointwise monotone increasing $(\varphi_n(x))$: increasing in $n, \forall x$ and converging pointwise to f.
- $\int_A f d\mu = \int_X f \chi_{X_A} d\mu.$
- Egoroff's Theorem:

 (X, \mathcal{A}, μ) : measure space. $\mu(X) < \infty$. $f_n \to f$ a.e., $(f_n)_{n \ge 1}$, f: measurable functions. Then, $\forall \varepsilon > 0, \exists B \in \mathcal{A} \text{ with } \mu(X \setminus B) < \varepsilon \text{ s.t. } f_n \to f \text{ uniformly on } B$.

• Lemma:

 (X, \mathcal{A}, μ) : measure space. $(A_i)_{i \geq 1}$ increasing sequence of measurable sets $(A_i \subset A_{i+1}, \forall i)$. Then,

$$\mu\left(\bigcup_{i=1}^{\infty}A_i\right) = \lim_{i \to \infty}\mu(A_i)$$

• Lusin's Theorem:

 $f:[a,b] \to \mathbb{R}$, Lebesgue measurable, $\varepsilon > 0$. Then, $\exists E \subset [a,b]$ compact s.t. $\mu([a,b] \setminus E) < \varepsilon$ and $f|_E$ is continuous.

- Littlewood's 3 principles of measure theory on \mathbb{R} :
 - 1. Every measurable set is nearly a finite sum (union) of intervals.
 - 2. Every L^p function is nearly continuous.
 - 3. Every pointwise convergent sequence of functions is nearly uniformly convergent.

• Monotone Convergence Theorem (MCT):

 (X, \mathcal{A}, μ) : measure space. $(f_n)_{n \ge 1}$: a sequence of nonnegative measurable functions s.t. $f_n(x) \le f_{n+1}(x), \forall x \in X, \forall n \ge 1$. Then,

$$\int_X \lim_{n \to \infty} f_n(x) d\mu = \lim_{n \to \infty} \int_X f_n(x) d\mu.$$

• Fatou's Lemma:

 (X, \mathcal{A}, μ) : measure space. $(f_n)_{n \ge 1}$: sequence of measurable functions, $f_n : X \to \overline{\mathbb{R}}, f_n(x) \ge 0, \forall x \in X$. Then,

$$\int_X \liminf_{n \to \infty} f_n(x) d\mu \le \liminf_{n \to \infty} \int_X f(x) d\mu.$$

• Lebesgue's Dominated Convergence Theorem (LDCT):

 (X, \mathcal{A}, μ) : measure space. $(f_n)_{n \ge 1}$: sequence of measurable functions $f_n \to f$ a.e. for some measurable f. If $\exists g$ integrable s.t. $|f_n(x)| \le g(x)$ for a.e. $x \in X$, then

$$\int_X f d\mu = \lim_{n \to \infty} \int_X f_n d\mu.$$

- Differentiation under integral sign:
 - (X, \mathcal{A}, μ) : complete measure space. $I \subset \mathbb{R}$: open. $f: X \times I \to \overline{\mathbb{R}}$, measurable. If
 - (i) $f(\cdot, t)$ integrable (on X), $\forall t \in I$,
 - (ii) $f(x, \cdot)$ differentiable (in t) for a.e. $x \in X$, and
 - (iii) $\exists g: X \to [0, \infty]$ s.t. $\forall t \in I, |\partial_t f(x, t)| \le g(x)$ for a.e. $x \in X$,

then $t \mapsto \int_X f(x,t) d\mu(x)$ is differentiable in t with derivative

$$\frac{d}{dt}\int_X f(x,t)d\mu(x) = \int_X \frac{\partial}{\partial t}f(x,t)d\mu(x)$$

• Fact:

 $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$: σ -finite measure spaces. Then, \exists ! measure $\mu \otimes \nu$ on $\mathcal{A} \otimes \mathcal{B}$ s.t. $\forall A \in \mathcal{A}, B \in \mathcal{B}$,

$$(\mu \otimes \nu)(A \times B) = \mu(A)\nu(B).$$

• Fubini/Tonelli:

 $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ σ -finite measure spaces. $f : X \times Y \to \overline{\mathbb{R}}, \mathcal{A} \otimes \mathcal{B}$ -measurable. Then, f is $\mu \otimes \nu$ -integrable \iff either

$$\begin{split} &\int_X \int_Y |f(x,y)| d\nu(y) d\mu(x) < \infty \\ &\int_Y \int_X |f(x,y)| d\mu(x) d\nu(y) < \infty \end{split}$$

or

Moreover, if
$$f$$
 is $\mu \otimes \nu$ -integrable, then

$$\int_{X \times Y} f(x, y) d\mu \otimes \nu = \int_X \int_Y f(x, y) d\nu(y) d\mu(x) = \int_Y \int_X f(x, y) d\mu(x) d\nu(y)$$

• Theorem:

 (X, \mathcal{A}, μ) : measure space. $1 \leq p \leq \infty$. Then, $L^p(X)$ is a Banach space.

- Properties of L^p convergence:
 - 1. Convergence in L^p does not imply convergence a.e.

2. $f_n \to f$ in $L^p \Rightarrow f_n \to f$ in measure, i.e., $\forall \varepsilon > 0$, $\mu(\{x : |f_n(x) - f(x)| > \varepsilon\} \to 0 \text{ as } n \to 0$.

• Proposition:

 $f_n \to f$ in measure $\Rightarrow \exists (f_{n_k})_{k \ge 1}$ s.t. $f_{n_k} \to f$ a.e.