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1 Definitions

1.1 Metric Space
• lim sup/lim inf of sets

lim sup
i→∞

Ai =

∞⋂
j=1

∞⋃
i=j

Ai

 , lim inf
i→∞

Ai =

∞⋃
j=1

∞⋂
i=j

Ai


• Metric space

A metric space (X, d) consists of a non-empty set X, d : X ×X → [0,∞) s.t.

1. d(x, y) = d(y, x),∀x, y ∈ X (symmetry)

2. d(x, y) = 0 ⇒ x = y,∀x, y ∈ X.

3. d(x, z) ≤ d(x, y) + d(y, z),∀x, y, z ∈ X (triangle inequality).

• Diameter
(X, d): metric space, A ⊂ X, then

diamA :=

{
supx,y∈A d(x, y) , A ̸= ϕ

0 , A = ϕ

and we say A is bounded if diamA < ∞.
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• Normed linear space
Let E be a vector space over F = R or C. We say that E is a normed linear space if ∃∥·∥ : E →
[0,∞) s.t.

1. ∥x∥ = 0 ⇐⇒ x = 0 ∈ E,∀x ∈ E.

2. ∥αx∥ = |α|∥x∥,∀x ∈ E,α ∈ F.

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥,∀x, y ∈ E.

• ℓp space

ℓp(N∗) :=

(x1, . . . , xn, . . . ) : xi ∈ R,∀i and

( ∞∑
i=1

|xi|p
) 1

p

< ∞


• p-norm

∥x∥p :=

( ∞∑
i=1

|xi|p
) 1

p

• Convergence of sequences
(xi)i≥1 ⊂ X, a sequence, converges to x∗ ∈ X if ∀ε > 0,∃n ≥ 1 s.t. ∀i ≥ n, d(xi, x∗) < ε.

• Cauchy sequence
(xi) ⊂ X a sequence in X is a Cauchy sequence if for all ε > 0, ∃m ≥ 1 for all i, j ≥ m,
d(xi, xj) < ε.

• Complete metric space
A metric space (X, d) is complete if every Cauchy sequence in X converges in X.

• Banach space
If a normed linear space E is complete w.r.t. the metric d(x, y) = ∥x− y∥, then (E, ∥·∥) is called
a Banach space.

• Convergence of series
If (Sn)n≥1 defined as Sn :=

∑n
i=1 xi converges to s ∈ R,

∑∞
i=1 xi is said to converge to s.

• Absolute convergence of series∑∞
i=1 xi is said to be absolutely convergent if

∑∞
i=1|xi| converges in R.

• Upper/lower bound
A ⊂ R has an upper bound M ∈ R, lower bound L ∈ R if x ∈ A ⇒ x ≤ M , x ∈ A ⇒ x ≥ L and
A is said to be bounded from above (below) if such an M (L) exists.

• Supremum/infimum
An upper bound M for a set A ⊂ R is a least upper bound (supremum) if M ≤ M ′ for all upper
bounds M ′ of A. Similarly, a lower bound L of a set A ⊂ R is a greatest lower bound (infimum)
if L ≥ L′ for all lower bounds L′ of A.

• lim sup/lim inf

lim sup
n→∞

xn = lim
n→∞

sup{xk : k ≥ n} = inf{sup{xk : k ≥ n} : n ≥ 1}

lim inf
n→∞

xn = lim
n→∞

inf{xk : k ≥ n} = sup{inf{xk : k ≥ n} : n ≥ 1}

• Continuity
f : R → R is continuous at x0 ∈ R if ∀ε > 0,∃δ > 0 s.t. ∀x ∈ R, |x − x0| < δ implies
|f(x)− f(x0)| < ε.

• Uniform continuity
f : X → Y is uniformly continuous on X if ∀ε > 0,∃δ > 0 s.t. ∀x, y ∈ X, d(x, y) < δ implies
d(f(x), f(y)) < ε.
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• Sequential continuity
X,Y : metric spaces. f : X → Y is sequentially continuous at x ∈ X if ∀(xn)n≥1 ⊂ X s.t.
xn → x as n → ∞, the sequence (f(xn))n≥1 converges to f(x) ∈ Y as n → ∞.

• Upper/Lower semicontinuity
A function f : X → R is upper semicontinuous on X if ∀(xn)n≥1 ⊂ X such that xn → x for
some x ∈ X implies f(x) ≥ lim supn→∞ f(xn).
Similarly, f : X → R is lower semicontinuous on X if ∀(xn)n≥1 ⊂ X, xn → x, x ∈ X implies
f(x) ≤ lim infn→∞ f(xn).

• Open/Closed ball
The open ball Br(x) = B(x; r) is the set Br(x) := {y ∈ X : d(x, y) < r} and closed ball
Br(x) := {y ∈ X : d(x, y) ≤ r}.

• Open/Closed sets
G ⊂ X is an open set if for every x ∈ G, ∃r > 0 s.t. Br(x) ⊂ G. A set F ⊂ X is closed in X if
X \ F is open.

• Topology on a set
τ is a topology on X if the family τ of open subsets of X satisfies

1. ϕ,X ∈ τ .

2. A,B ∈ τ ⇒ A ∩B ∈ τ .

3. {Ai : i ∈ I an arbitrary family of elements of τ} ⇒
⋃

i∈I Ai ∈ τ .

X equipped with τ is called a topological space.

• Convergence in topological space
(xn)n≥1 ⊂ X converges to x ∈ X for a topological space (X, τ) if for all A ∈ τ with x ∈ A,
∃N ≥ 1 s.t. ∀n ≥ N, xn ∈ A.

• Measure zero (child’s version)
A ⊂ R is said to have measure zero if for every ε > 0 there is a countable collection of open
intervals (In) s.t. A ⊂

⋃∞
n=1 In and

∑∞
i=1 length(In) < ε.

• Closure
The closure of a set A in a metric (or topological) space X is

A =
⋂

A⊂F⊂X,F :closed

F

which is the smallest closed set containing A.

• Dense in a metric space
(X, d): metric space. A ⊂ X is dense in X if A = X.

• Separable
(X, d): metric space is separable if X contains a countable dense subset.

• Isometry/Isomorphism
X,Y : metric space. i : X → Y is an isometry if

d(i(x1), i(x2)) = d(x1, x2),∀x1, x2 ∈ X.

If i is an isometry that is surjective (onto), it is a (metric space) isomorphism.

• Completion of a metric space
Given metric space (X, d), another metric space (X̃, d̃) is a completion of X if

1. ∃i : X → X̃ an isometry.

2. i(X) is dense in X̃.

3. (X̃, d̃) is complete.
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• Equivalence relation
A relation ∼ defines an equivalence relation if it is

1. reflexive: a ∼ a,∀a

2. symmetric: a ∼ b ⇐⇒ b ∼ a,∀a, b

3. transitive: a ∼ b, b ∼ c ⇒ a ∼ c,∀a, b, c

• Sequential compactness
X: metric space. K ⊂ X is sequentially compact if every sequence in K has a subsequence which
converges to a point in K.

• Open cover
X: metric space, A ⊂ X. A collection {Gα}α∈I of subsets of X is said to cover A if

A ⊂
⋃
α∈I

Gα

If every Gα is open, we say {Gα} is an open cover of A.

• ε-net
For ε > 0 and A ⊂ X, a subset E = {xα : α ∈ I}, with I: arbitrary index set, is a ε-net for A if
{Bε(xα) : α ∈ I} is an open cover of A, i.e., A ⊂

⋃
α∈I Bε(xα).

If I is finite and E is an ε-net, then E is a finite ε-net.

• Totally bounded
X: metric space. A ⊂ X is totally bounded if for every ε > 0 there exists a finite ε-net for A.

• Compactness
X: metric space. K ⊂ X is compact if every open cover of K has a finite subcover.

• Precompact:
X: metric space. A ⊂ X is precompact if A is compact.

1.2 Space of Continuous Functions/Contraction Mapping Theorem
• Some subspaces:

– C(X): space of real-valued continuous functions in X.

– Cb(X): space of real-valued bounded continuous functions in X.

– Cc(X): space of real-valued continuous functions in X with compact support, i.e.,

Cc(X) := {f : X → R : f ∈ C(X), supp f ⊂ X : compact}

– C0(X): closure of Cc(X) in Cb(X).

Cc(X) ⊆ C0(X) ⊆ Cb(X) ⊆ C(X)

with equality if X: compact.

• Pointwise convergence:
fn → f pointwise as n → ∞ if for all x ∈ X, fn(x) → f(x) (in R) as n → ∞.

• Uniform norm:
Uniform norm ∥·∥∞ is a norm defined on Cb(X) as

∥f∥∞ = sup
x∈X

|f(x)|

and convergence in the uniform norm is called uniform convergence.

• Equicontinuity:
X: metric space. A family F of functions in C(X) is equicontinuous if ∀x ∈ X, ε > 0, ∃δ > 0
s.t. ∀y ∈ X, d(x, y) < δ implies |f(x)− f(y)| < ε for all f ∈ F .
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• Lipschitz continuity:
(X, d): metric space. f : X → R is said to be Lipschitz continuous on X if ∃L > 0 s.t.
|f(x)− f(y)| ≤ L · d(x, y),∀x, y ∈ X.

• Lipschitz constant:

Lip(f) := sup
x ̸=y

|f(x)− f(y)|
d(x, y)

= inf{C : |f(x)− f(y)| ≤ C · d(x, y),∀x, y ∈ X}

• Space of continuously differentiable functions:

C1(X) = {f ∈ C(X) : f ′ is continuous on X}.

• ODE IVP Solution:

(∗)

{
d
dtu(t) = f(t, u(t)), t ≥ 0

u(0) = u0

A solution to (∗) is a function u ∈ C1(I), I ⊂ R open with 0 ∈ I s.t. u̇(t) = f(t, u(t)), ∀t ∈ I.

• Contraction:
(X, d): metric space. A map T : X → X is a contraction if ∃0 ≤ c < 1 s.t.

d(T (x), T (y)) ≤ C · d(x, y), ∀x, y ∈ X.

• Bounded linear map:
A linear map A : X → Y is bounded if ∃c > 0 s.t. ∥Ax∥ ≤ c∥x∥, ∀x ∈ X.

• Differentiable:
X,Y : Banach spaces, f : X → Y . f is differentiable at x ∈ X if ∃f ′ : X → Y linear bounded
map s.t.

f(x+ εh) = f(x) + εf ′(x)h+ o(ε)

as ε → 0.

1.3 Measure and Integration
• σ-algebra:

A σ-algebra on a set X is a collection A of subsets of X s.t.

1. ϕ ∈ A

2. A ∈ A ⇒ Ac = X \A ∈ A

3. If (Ai)i∈I is a countable family of sets in A, then
⋃

i∈I Ai ∈ A.

• Measurable space:
A set X with a σ-algebra A on X is a measurable space. The elements of A are measurable sets.

• Measure:
(X,A): measurable space. A measure on (X,A) is a map µ : A → [0,∞] s.t.

1. µ(ϕ) = 0

2. If (Ai)i∈I is a countable family of pairwise disjoint sets in A, then

µ

(⋃
i∈I

Ai

)
=
∑
i∈I

µ(Ai).

• Finite/σ-finite measures:
µ is finite if µ(X) < ∞, and σ-finite if ∃A1, A2, . . . s.t.

X =

∞⋃
i=1

Ai

with µ(Ai) < ∞, ∀i = 1, 2, . . . .
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• Measure space:
(X,A, µ) is a measure space with A a σ-algebra on X and µ : A → [0,∞] a measure.

• Generated σ-algebra:
Given F ⊂ P(X), the σ-algebra generated by F , A(F), is the intersection of all σ-algebras
containing F . This is the smallest σ-algebra that contains F .

• Borel σ-algebra:
(X, τ): topological space. The Borel σ-algebra, denoted B(X), is A(τ), the σ-algebra generated
by the collection of open sets.

• Counting measure:
X: any set, A = P(X), the counting measure ν is given by ν : P → [0,∞], ν(A) = #A (i.e., the
number of elements) for A ⊂ X.

• Dirac delta measure:
Given x0 ∈ Rn, the Dirac delta measure

δx0
: B(Rn) → [0,∞], δx0

(A) =

{
0, if x0 /∈ A

1, if x0 ∈ A

• Lebesgue measure:
The unique measure λ on B(Rn) satisfying

λ((a1, b1)× · · · × (an, bn)) = (b1 − a1)(b2 − a2) · · · (bn − an)

is the Lebesgue measure on B(Rn).

• Complete measure space:
(X,A, µ), a measure space, is complete if every subset of a set of measure zero is measurable.

• Lebesgue measurable sets:
The class L (Rn) of Lebesgue measurable sets is the completion of B(Rn) w.r.t. the Lebesgue
measure.

• Measure zero:
(X,A, µ): measure space. A ⊂ X has measure zero if A ∈ A and µ(A) = 0.

• Almost everywhere (a.e.):
A property that holds except on a set of measure zero is said to hold almost everywhere (a.e.).

• Essential supremum:
ess supA = inf{C : ∃N ⊂ R measure zero s.t. x ≤ c,∀x ∈ A \N}.

• Equality a.e. of functions:
(X,A, µ): measure space. f, g: measurable functions. f and g are equal a.e. w.r.t. µ if
µ ({x ∈ X : f(x) ̸= g(x)}) = 0.

• Measurable function (w.r.t. measurable spaces):
(X,A), (Y,B): measurable spaces, f : X → Y is (X,A)−(Y,B) measurable if f−1(B) ∈ A,
∀B ∈ B.

• Extended real line:
R = R ∪ {−∞,∞} with conventions 0 · ∞ = 0 · (−∞) = 0.

• Measure preserving:
T : X → X measurable, (X,A, µ): measure space. T is measure preserving if

µ(T−1(A)) = µ(A),∀A ∈ A.

• Measurable function:
f : X → R (or R) is measurable if it is (X,A, µ)−(R,B(R)) measurable.

6



STAT31440 Applied Analysis Seung Chul (Eric) Lee

• Characteristic (or indicator) function:
(X,A): measurable space, A ∈ A,

χA(x) =

{
0, x /∈ A

1, x ∈ A

• Simple function:
φ : X → R written as

φ =

n∑
i=1

ciχAi

for c1, . . . , cn ∈ R, A1, . . . , An ∈ A is a simple function.

• Partitioning a function:
f : X → R, measurable.

f = f+ − f−, where f+ = max{f, 0}, f− = −min{f, 0}

• Lebesgue integral (of a simple function):
(X,A, µ): measure space. For φ : X → R, a simple measurable function, φ =

∑n
i=1 ciχAi

, the
Lebesgue integral is ∫

φdµ =

n∑
i=1

ciµ(Ai)

• Lebesgue integral (of a general function):
(X,A, µ): measure space. f : X → [0,∞] measurable.∫

fdµ = sup

{∫
φdµ : φ simple with φ ≤ f

}

• Integrable:
A function f is integrable (summable) if

∫
|f |dµ < ∞.

• Product σ-algebra:
(X,A), (Y,B): measurable spaces. The product σ-algebra A ⊗ B is the σ-algebra generated by
the collection of sets ξ = {A×B : A ∈ A, B ∈ B}.

• Lp space:
(X,A, µ): measure space. 1 ≤ p < ∞.

Lp(X) =

{
equivalence classes of functions f : X → C :

∫
|f |pdµ < ∞

}
Also,

L∞(X) =

{
equivalence classes of functions f : X → C : ess sup

x∈X
|f(x)| < ∞

}
• Lp norm:

For 1 ≤ p < ∞,

∥f∥Lp(X) =

(∫
X

|f |pdµ
) 1

p

For p = ∞,
∥f∥L∞(X) = ess sup

x∈X
|f(x)|
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2 Useful Facts

2.1 Metric Space
• Cauchy-Schwarz inequality

x · y ≤ ∥x∥∥y∥

• (X, dX), (Y, dY ): two metric spaces
⇒ X × Y is also a metric space with product metric defined as

d(u, v) = dX(uX , vX) + dY (uY , vY ), u = (uX , uY ) ∈ X × Y, v = (vX , vY ) ∈ X × Y

• If E: normed linear space, then E is a metric space with d(x, y) = ∥x − y∥,∀x, y ∈ E, i.e., the
norm-induced metric.

• E: normed linear space, (xn)n≥1: a sequence in E.
If xn → x ∈ E for some x ∈ E, then

lim
n→∞

∥xn∥ = ∥x∥

i.e., ∥·∥ is continuous on E.

• Hölder’s inequality (in Rn)
x, y ∈ Rn, 1 ≤ p < ∞, 1 ≤ q < ∞, 1

p + 1
q = 1 (conjugate exponents). Then,

n∑
j=1

|xjyj | ≤ ∥x∥p∥y∥q.

• (xn): Cauchy ⇒ (xn): bounded.

• (xn): converges ⇒ (xn): Cauchy.

• A normed linear space may be equipped with multiple different norms.

•
∑

xn: absolutely convergent ⇒
∑

xn: convergent

• In R or a Banach space:∑
xi → s ⇐⇒ ∀ε > 0,∃N ≥ 1 s.t. |xn+1 + · · ·+ xn+p| < ε,∀n ≥ N, p ≥ 1

(a version of Cauchy criterion).

• Existence of inf/sup for bounded sets A ⊂ R ⇐⇒ completeness of R.

• lim inf, lim sup always defined for sequences in R.

lim inf
n→∞

xn ≤ lim sup
n→∞

xn

•
xn → x ⇐⇒ lim inf

n→∞
= lim sup

n→∞
= x

• [a, b]: closed, bounded interval in R, f : continuous on [a, b] ⇒ f : uniformly continuous on [a, b].

• f : Rn → Rn is affine if

f(tx+ (1− t)y) = tf(x) + (1− t)f(y), ∀x, y ∈ Rn, 0 ≤ t ≤ 1

Every affine function is uniformly continuous on Rn and can be written as f : x 7→ Ax + b for
A ∈ Lin(Rn,Rn), b ∈ Rn.

• X,Y : metric spaces. f : X → Y, x ∈ X, f : continuous at x ⇒ f : sequentially continuous at x.
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• f : continuous on X ⇐⇒ f : both upper and lower semicontinuous.

• X,Y : metric spaces, f : X → Y , continuous on X ⇐⇒ for every G ⊂ Y open, f−1(G) is open
in X.

• Open mapping theorem
E,F : Banach spaces, T : E → F , continuous, linear, surjective ⇒ T : open map, i.e., maps open
sets to open sets.

• E,F : Banach spaces, T : E → F , continuous, linear, bijective ⇒ T−1: continuous.

• f : continuous on X ⇐⇒ ∀F ⊂ Y closed f−1(F ) ⊂ X is closed.

• Finite unions of closed sets are closed; arbitrary intersections of closed sets are closed.

• Infinite intersections of open sets may not be open; infinite unions of closed sets may not be
closed.

• Every open set G ⊂ R can be written as a countable union of disjoint open intervals.

• (X, d): metric space. F ⊂ X: closed ⇐⇒ for every sequence (xn) ⊂ X convergent in X, if
xn ∈ F for all n ≥ 1, then limn→∞ xn ∈ F .

• (X, d): complete metric space, F ⊂ X is a complete metric space (w.r.t. induced metric space)
⇐⇒ F is a closed set in X.

• Sequential equivalent of closure

A = {x ∈ X : ∃(an)n≥1 ⊂ A, an → x}.

• Any isometry i : X → Y is injective.

• Uniqueness of completion
(X, d): metric space. If (X̃1, d̃1), (X̃2, d̃2) are two completions of X, then they are isomorphic.

• Equivalence class of Cauchy sequences

(xn) ∼ (yn) ⇐⇒ d(xn, yn) → 0, n → ∞

• Bolzano-Weierstrass Theorem
Every bounded sequence in Rn has a convergent subsequence.

• Heine-Borel Theorem
A ⊂ Rn: sequentially compact ⇐⇒ A: closed, bounded.

• Theorem:
(X, d): metric space. X: sequentially compact ⇐⇒ X: complete and totally bounded.

• Theorem:
X: metric space. K ⊂ X: sequentially compact ⇐⇒ K: compact.

• Lemma:
X: metric space, K ⊂ X: sequentially compact. If {Gα}α∈I is an open cover of K, then there
exists δ > 0 s.t. ∀A ⊂ K, diam(A) ≤ δ implies A ⊂ Gα for some α ∈ I.

• A ⊂ Rn: precompact ⇐⇒ A: bounded.

• X: metric space, A ⊂ X: precompact ⇐⇒ every sequence in A has a subsequence which
converges to some point in X.

• X: metric space, K ⊂ X: compact ⇐⇒ K: closed and precompact.

• X: complete metric space, A ⊂ X: precompact ⇒ A: totally bounded.

• Theorem:
K: compact metric space, Y : metric space, f : X → Y continuous on K ⇒ f(K) ⊂ Y : compact.
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• Theorem:
K: compact metric space, Y : metric space, f : X → Y continuous on K ⇒ f : uniformly
continuous on K.

• Theorem:
K: compact metric space, f : K → R continuous. Then, ∃x, y ∈ K s.t.

f(x) = inf
z∈K

f(z), f(y) = sup
z∈K

f(z).

• Theorem: (Equivalence of norms)
E: finite dimensional vector space, ∥·∥, ∥·∥′: norms. Then, ∃c, C > 0 s.t.

c∥x∥ ≤ ∥x∥′ ≤ C∥x∥.

2.2 Space of Continuous Functions/Contraction Mapping Theorem
• Uniform convergence ⇒ pointwise convergence.

• (X, d): metric space, (fn)n≥1 ⊂ Cb(X) a sequence. If fn → f uniformly for some bounded
f : X → R, then f is continuous.

• X: compact metric space. Then, C(X) is complete, i.e., a Banach space.

• f : Rn → R has compact support ⇐⇒ ∃R > 0 s.t. f(x) = 0,∀x ∈ Rn with |x| > R.

• Ascoli-Arzela thm:
If X: compact metric space, then F ⊂ C(X) is precompact in C(X) iff it is bounded in C(X)
and equicontinuous.
If X: compact metric space, then F ⊂ C(X) is compact in C(X) iff F is closed, bounded, and
equicontinuous.

• f : Lipschitz ⇒ f : uniformly continuous (but not vice versa).

• C ⊂ Rn: open, convex, f : C → R continuously differentiable on C.
If the partial derivatives of f and bounded on C, then ∀x, y ∈ C,

|f(x)− f(y)| ≤
(
sup
y∈C

|∇f(x)|
)
|x− y|

• (K, d): compact metric space, M > 0. Then,
FM = {f ∈ C(K) : f Lipschitz on K, Lip(f) ≤ M} is an equicontinuous subset of C(K).
FM is also closed.

• Any bounded family of continuously differentiable functions on C(K) with bounded derivatives
is precompact in C(K).

• If K: compact metric space, x0 ∈ K, then

BM = {f ∈ FM : f(x0) = 0}

is a closed bounded subset of FM and thus compact.

• Theorem:
f : (t, u) 7→ f(t, u) continuous on R2. Then, ∀(t0, u0) ∈ R2, ∃I ⊂ R an open interval with t0 ∈ I
s.t. the IVP {

u̇ = f(t, u)

u(t0) = u0

has a solution u ∈ C1(I) on I.
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• Suppose f : R2 → R is continuous in R = {(t, u) : |t− t0| ≤ T, |u− u0| ≤ L} with |f(t, u)| ≤ M
for (t, u) ∈ R2, and that u 7→ f(t, u) is Lipschitz uniformly in t in the sense that ∃C > 0 s.t.
|f(t, u)− f(t, v)| ≤ C|u− v|,∀(t, u), (t, v) ∈ R.
Set δ := min{T, L/M}. Then, every solution u to u̇(t) = f(t, u), u(t0) = u0 satisfies

|u(t)− u0| ≤ L for |t− t0| < δ,

and the solution is unique on |t− t0| < δ.

• Gronwall’s inequality:
T > 0, u, φ ∈ C([0, T ]) with u(t) ≥ 0 and φ(t) ≥ 0,∀t ∈ [0, T ]. Fix u0 ≥ 0. If u satisfies

u(t) ≤ u0 +

∫ t

0

φ(s)u(s)ds, t ∈ [0, T ],

then

u(t) ≤ u0 exp

(∫ t

0

φ(s)ds)

)
for 0 ≤ t ≤ T .

• (X, d): metric space. T : X → X contraction ⇒ T : uniformly continuous on X.

• Banach contraction mapping thm:
(X, d): complete metric space, T : X → X contraction ⇒ T has a unique fixed point, i.e., ∃x ∈ X
s.t. T (x) = x and there is exactly one such value x.

• Theorem:
f : I × Rn → Rn continuous in t, globally Lipshitz u, uniform in t, (t, u) 7→ f(t, u).{

u̇ = f(t, u(t))

u(t0) = u0

I ⊂ R s.t. t0 ∈ I. Then, ∃! continuously differentiable u solving the IVP.

• Inverse Function Thm:
U ⊂ Rn: open, f : U → Rn, continuously differentiable. x0 ∈ U s.t. (Df)(x0) ∈ Lin(Rn,Rn) is
nonsingular. Then, ∃ open sets V ⊂ U containing x0, W ⊂ Rn containing y0 = f(x0) and g :
W → V s.t. g(f(x)) = x for x ∈ V and f(g(y)) = y for y ∈ W . Moreover, Dg(y) = [(Df)(x)]−1.

• Implicit Function Thm:
m,n ≥ 1, A ⊂ Rn+m open, F : A → Rm continuously differentiable. If (x0, y0) ∈ A s.t.
F (x0, y0) = 0 and (DyF )(x0, y0) is invertible, then ∃ open sets W ⊂ Rn, x0 ∈ U, V ⊂ A ⊂
Rn+m, (x0, y0) ∈ V , and G : W → Rm differentiable at x0 s.t.

{(x, y) ∈ V : F (x, y) = 0} = {(x,G(x)) : x ∈ W}

2.3 Measure and Integration
• Lemma:
F ⊂ P(X) ⇒ A(F) is a σ-algebra.

• Theorem:
X: set, F ⊂ P(X), A = A(F), µ : A → [0,∞] a measure. If there is a countable family (Ai)i∈I

of sets in F s.t. µ(Ai) < ∞, ∀i and X =
⋃

i∈I Ai, then for any measure ν : A → [0,∞], if
µ(A) = ν(A), ∀A ∈ F , then µ = ν on A.

• Properties of Borel σ-algebra:

1. B(R) is also generated by the collection of open intervals (a, b) ⊂ R and the collection of
half-open intervals (a, b] ⊂ R.

2. B(Rn) is generated by family of rectangles

Q = (a1, b1)× (a2, b2)× · · · × (an, bn)

11
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3. B(Rn) is not complete w.r.t. the Lebesgue measure.

• Theorem:
A ⊂ Rn: Lebesgue measurable ⇐⇒ ∀ε > 0,∃F : closed in Rn, G: open in Rn s.t. F ⊂ A ⊂ G
and λ(G \ F ) < ε.
Moreover, for all such A, λ(A) = inf{λ(U) : U open, A ⊂ U} = sup{λ(K) : K compact, K ⊂ A}.

• Properties of Lebesgue measure:

1. Translation invariant: A ∈ L (Rn), h ∈ Rn ⇒ λ(τhA) = λ(A) with τhA = {x+ h : x ∈ A}.

2. T : Rn → Rn linear

T (A) = {Tx : x ∈ A}, A ∈ L (Rn) ⇒ λ(T (A)) = |detT |λ(A).

• f : X → R continuous ⇒ f : measurable w.r.t. B(X).

• (X,A): measurable space. f : X → R, measurable ⇐⇒ {x ∈ X : f(x) < c} ∈ A,∀c ∈ R.

• (X,A, µ): complete measure space. (fn)n≥1: sequence of measurable functions, fn : X → R s.t.
fn → f pointwise µ-a.e. Then, f is measurable. (Not necessarily continuous.)

• f, g: Lebesgue measurable ̸⇒ f ◦ g: Lebesgue measurable (even if g is continuous).

• f : Borel measurable, g: Lebesgue/Borel measurable ⇒ f ◦ g: Lebesgue/Borel measurable.

• (X,A, µ): measure space. f : X → [0,∞] measurable. Then, ∃(φn)n≥1: sequence of simple
functions, pointwise monotone increasing (φn(x): increasing in n, ∀x) and converging pointwise
to f .

•
∫
A
fdµ =

∫
X
fχXA

dµ.

• Egoroff’s Theorem:
(X,A, µ): measure space. µ(X) < ∞. fn → f a.e., (fn)n≥1, f : measurable functions. Then,
∀ε > 0, ∃B ∈ A with µ(X \B) < ε s.t. fn → f uniformly on B.

• Lemma:
(X,A, µ): measure space. (Ai)i≥1 increasing sequence of measurable sets (Ai ⊂ Ai+1,∀i). Then,

µ

( ∞⋃
i=1

Ai

)
= lim

i→∞
µ(Ai)

• Lusin’s Theorem:
f : [a, b] → R, Lebesgue measurable, ε > 0. Then, ∃E ⊂ [a, b] compact s.t. µ ([a, b] \ E) < ε and
f |E is continuous.

• Littlewood’s 3 principles of measure theory on R:

1. Every measurable set is nearly a finite sum (union) of intervals.

2. Every Lp function is nearly continuous.

3. Every pointwise convergent sequence of functions is nearly uniformly convergent.

• Monotone Convergence Theorem (MCT):
(X,A, µ): measure space. (fn)n≥1: a sequence of nonnegative measurable functions s.t. fn(x) ≤
fn+1(x),∀x ∈ X,∀n ≥ 1. Then,∫

X

lim
n→∞

fn(x)dµ = lim
n→∞

∫
X

fn(x)dµ.

• Fatou’s Lemma:
(X,A, µ): measure space. (fn)n≥1: sequence of measurable functions, fn : X → R, fn(x) ≥
0,∀x ∈ X. Then, ∫

X

lim inf
n→∞

fn(x)dµ ≤ lim inf
n→∞

∫
X

f(x)dµ.

12
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• Lebesgue’s Dominated Convergence Theorem (LDCT):
(X,A, µ): measure space. (fn)n≥1: sequence of measurable functions fn → f a.e. for some
measurable f . If ∃g integrable s.t. |fn(x)| ≤ g(x) for a.e. x ∈ X, then∫

X

fdµ = lim
n→∞

∫
X

fndµ.

• Differentiation under integral sign:
(X,A, µ): complete measure space. I ⊂ R: open. f : X × I → R, measurable. If

(i) f(·, t) integrable (on X), ∀t ∈ I,

(ii) f(x, ·) differentiable (in t) for a.e. x ∈ X, and

(iii) ∃g : X → [0,∞] s.t. ∀t ∈ I, |∂tf(x, t)| ≤ g(x) for a.e. x ∈ X,

then t 7→
∫
X
f(x, t)dµ(x) is differentiable in t with derivative

d

dt

∫
X

f(x, t)dµ(x) =

∫
X

∂

∂t
f(x, t)dµ(x)

• Fact:
(X,A, µ), (Y,B, ν): σ-finite measure spaces. Then, ∃! measure µ⊗ν on A⊗B s.t. ∀A ∈ A, B ∈ B,

(µ⊗ ν)(A×B) = µ(A)ν(B).

• Fubini/Tonelli:
(X,A, µ), (Y,B, ν) σ-finite measure spaces. f : X × Y → R, A ⊗ B-measurable. Then, f is
µ⊗ ν-integrable ⇐⇒
either ∫

X

∫
Y

|f(x, y)|dν(y)dµ(x) < ∞

or ∫
Y

∫
X

|f(x, y)|dµ(x)dν(y) < ∞

Moreover, if f is µ⊗ ν-integrable, then∫
X×Y

f(x, y)dµ⊗ ν =

∫
X

∫
Y

f(x, y)dν(y)dµ(x) =

∫
Y

∫
X

f(x, y)dµ(x)dν(y)

• Theorem:
(X,A, µ): measure space. 1 ≤ p ≤ ∞. Then, Lp(X) is a Banach space.

• Properties of Lp convergence:

1. Convergence in Lp does not imply convergence a.e.

2. fn → f in Lp ⇒ fn → f in measure, i.e., ∀ε > 0, µ({x : |fn(x)− f(x)| > ε} → 0 as n → 0.

• Proposition:
fn → f in measure ⇒ ∃(fnk

)k≥1 s.t. fnk
→ f a.e.
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