STAT31430 Applied Linear Algebra

Notes for Exam Preparation

Seung Chul Lee

A Note of Caution:

These notes are created solely for my personal use and do not accurately represent the pedagogy or the material covered for the course named above. I have taken this class during Fall 2022, which may or may not have identical structure in future quarters. All errors contained are my own.

Contents

1		initions
	1.1	Matrix Basics
	1.2	Spectral Theory
	1.3	Singular Value Decomposition
		Matrix Norms
	1.5	Algorithms for Matrix Computation/Linear Systems of Equations
2	Use	eful Facts
_		Matrix Basics
		Spectral Theory
		Singular Value Decomposition
		Matrix Norms
	2.5	Algorithms for Matrix Computation/Linear Systems of Equations

1 Definitions

1.1 Matrix Basics

• Linearly independent:

$$\forall \alpha_1, \dots, \alpha_n \in \mathbb{K}, \ \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0 \Rightarrow \alpha_1 = \dots = \alpha_n = 0$$

• Orthonormal:

$$\langle y_i, y_j \rangle = 0, \ \forall i \neq j, \ \|y_i\| = 1, \ \forall i$$

• Kernel:

For $A \in \mathcal{M}_{n,p}(\mathbb{K})$,

$$\ker(A) = \{x \in \mathbb{K}^p : Ax = 0\} \subset \mathbb{K}^p$$

• Image:

For $A \in \mathcal{M}_{n,p}(\mathbb{K})$,

$$\operatorname{im}(A) = \{Ax : x \in \mathbb{K}^p\} \subset \mathbb{K}^n$$

• Dimension:

The number of elements in a spanning linearly independent set of vectors, i.e., a basis.

- Rank: $\operatorname{rank} A = \dim(\operatorname{im} A)$
- Trace: $A = (a_{ij})_{1 \le i,j \le n}, \operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$
- Permutation: $\sigma: \{1, \dots, n\} \to \{1, \dots, n\}$ such that it is both injective and surjective, i.e., bijective.
- Determinant: For $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$,

$$\det(A) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

where $\varepsilon(\sigma) = (-1)^{p(\sigma)}$, the signature of σ , and $p(\sigma) = \sum_{1 \le i \le j \le n} \text{Inv}_{\sigma}(i, j)$, the inversion counter.

- Adjoint/conjugate transpose/Hermitian transpose: For $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$, $A^* \in \mathcal{M}_n(\mathbb{C})$ given by $A^* = \overline{A^{\top}} = (\overline{a_{ji}})$
- $A \in \mathcal{M}_n(\mathbb{C})$ is
 - self-adjoint (or Hermitian) if $A = A^*$.
 - unitary if $A^{-1} = A^*$, i.e., $AA^* = A^*A = I$.
 - normal if $AA^* = A^*A$.
- $A \in \mathcal{M}_n(\mathbb{R})$ is
 - symmetric (= self-adjoint) if $A = A^{\top}$.
 - orthogonal (= unitary) if $A^{-1} = A^{\top}$, i.e., $AA^{\top} = A^{\top}A = I$.
 - normal if $AA^{\top} = A^{\top}A$.

1.2 Spectral Theory

• Characteristic polynomial: For $A \in \mathcal{M}_n(\mathbb{C})$,

$$P_A: \mathbb{C} \to \mathbb{C}, \ P_A(\lambda) = \det(A - \lambda I)$$

• Eigenvalues: The roots of the characteristic polynomial, i.e.,

$$\lambda \in \mathbb{C} \text{ s.t. } \det(A - \lambda I) = 0$$

• Spectrum:

$$\sigma(A) = \{ \lambda \in \mathbb{C} : \det(A - \lambda I) = 0 \}$$

 \bullet Algebraic multiplicity: The largest k such that

$$P_A(z) = (z - \lambda)^k Q(z)$$

• Eigenvector:

A nonzero vector $x \in \mathbb{C}^n$ s.t. $Ax = \lambda x$ for some $\lambda \in \sigma(A)$.

• Spectral radius: For $A \in \mathcal{M}_n(\mathbb{C})$, the spectral radius of A is

$$\rho(A) := \max_{\lambda \in \sigma(A)} |\lambda|$$

• Eigenspace:

For $\lambda \in \sigma(A)$, $A \in \mathcal{M}_n(\mathbb{C})$, the eigenspace of \mathbb{C}^n associated to λ is

$$E_{\lambda} := \ker(A - \lambda I) = \{x \in \mathbb{C}^n : Ax = \lambda x\}$$

• Generalized eigenspace:

$$F_{\lambda} := \bigcup_{k>1} \ker(A - \lambda I)^k$$

• Matrix polynomial:

For polynomial $P \in \mathbb{C}[x] = \{a_0 + a_1x + a_2x^2 + \dots + a_dx^d : a_1, \dots, a_d \in \mathbb{C}, d \geq 0\}$ and $A \in \mathcal{M}_n(\mathbb{C})$, then $P : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ determined by

$$P(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_d A^d$$

is the corresponding matrix polynomial.

• Direct sum:

If $F_1, \ldots, F_p \subset \mathbb{C}^n$ are subspaces, we write

$$\mathbb{C}^n = \bigoplus_{i=1}^p F_i$$

if any $x \in \mathbb{C}^n$ can be written uniquely as $x = \sum_{i=1}^p x_i, \ x_i \in F_i, \ 1 \le i \le p$.

• Reduction to triangular form:

 $A \in \mathcal{M}_n(\mathbb{C})$ can be reduced to upper (lower) triangular form if $\exists P \in \mathbb{M}_n(\mathbb{C})$ nonsingular and an upper (lower) triangular matrix T s.t. $A = PTP^{-1}$.

• Similar matrices:

A and T are similar matrices if $\exists P$ invertible s.t. $A = PTP^{-1}$.

• Diagonalizability:

A is said to be diagonalizable if $A = PDP^{-1}$ for suitable P and D diagonal.

• Rayleigh quotient:

 $A \in \mathcal{M}_n(\mathbb{C})$ self-adjoint (Hermitian). The Rayleigh quotient is the function $R_A : \mathbb{C}^n \setminus \{0\} \to \mathbb{R}$ defined by

$$R_A(x) = \frac{\langle Ax, x \rangle}{\langle x, x \rangle}$$

1.3 Singular Value Decomposition

• Positive definiteness:

 $A \in \mathcal{M}_n(\mathbb{C})$: Hermitian is positive definite if every eigenvalue $\lambda \in \sigma(A)$ satisfies $\lambda > 0$.

• Positive semidefiniteness:

 $A \in \mathcal{M}_n(\mathbb{C})$: Hermitian is positive definite if every eigenvalue $\lambda \in \sigma(A)$ satisfies $\lambda \geq 0$.

• Singular values:

The singular values of $A \in \mathcal{M}_{m,n}(\mathbb{C})$ are the square roots of the eigenvalues of A^*A .

• Moore-Penrose pseudoinverse:

Given a matrix $A \in \mathcal{M}_{m,n}(\mathbb{C})$ with SVD $A = V\tilde{\Sigma}U^*$, the pseudoinverse $A^{\dagger} \in \mathcal{M}_{n,m}(\mathbb{C})$ is the matrix

$$A^{\dagger} = U\tilde{\Sigma}^{\dagger}V^*, \quad \tilde{\Sigma}^{\dagger} = \begin{bmatrix} \Sigma^{-1} & 0\\ 0 & 0 \end{bmatrix} \in \mathcal{M}_{n,m}(\mathbb{R})$$

• Fundamental spaces of matrices:

$$A \in \mathcal{M}_{m,n}(\mathbb{R}) = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} \tilde{a}_1 \\ \vdots \\ \tilde{a}_m \end{bmatrix}$$

- Column space: $col(A) = span\{a_1, \dots, a_n\}$
- Kernel or null space: $\ker(A) = \text{null}(A) = \{x \in \mathbb{R}^n : Ax = 0\}$
- Row space: $\operatorname{row}(A) = \operatorname{span}\{\tilde{a}_1, \dots, \tilde{a}_n\} = \operatorname{col}(A^\top)$
- Left null space: $\ker(A^{\top}) = \{ y \in \mathbb{R}^m : A^{\top}y = 0 \}$

1.4 Matrix Norms

• Norm:

A norm $\|\cdot\|: \mathbb{K}^d \to [0,\infty)$ is a function satisfying

- i. positive definiteness: $||x|| \ge 0$ with ||x|| = 0 iff x = 0, $\forall x \in \mathbb{K}^d$.
- ii. homogeneity: $\|\lambda x\| = |\lambda| \|x\|$, $\forall x \in \mathbb{K}^d, \lambda \in \mathbb{K}$
- iii. triangle inequality: $||x+y|| \le ||x|| + ||y||$, $\forall x, y \in \mathbb{K}^d$
- Inner product:

 $\langle \cdot, \cdot, \rangle$ an inner product on $V \times V \to \mathbb{C}$ is a map satisfying

- i. $\langle v, v \rangle \ge 0, \ \forall v \in V$
- ii. $\langle \alpha_1 w_1 + \alpha_2 w_2, v \rangle = \alpha_1 \langle w_1, v \rangle + \alpha_2 \langle w_2, v \rangle, \quad w_1, w_2, v \in V, \alpha_1, \alpha_2 \in \mathbb{C}$
- iii. $\langle v, v \rangle = 0 \iff v = 0 \in V$
- iv. $\langle v, w \rangle = \langle w, v \rangle, \ \forall v, w \in V$
- Euclidean norm:

$$||x||_2 = \left(\sum_{i=1}^d |x_i|^2\right)^{\frac{1}{2}}$$

• *p*-norm:

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}}, \ 1 \le p \le \infty$$

• Weighted *p*-norm:

$$||x||_{p,w} = \left(\sum_{i=1}^{d} w_i |x_i|^p\right)^{\frac{1}{p}}, \quad w = (w_1, \dots, w_d), \quad w_i > 0, \quad \forall i = 1, \dots, d$$

• Norm using matrix:

For A: real, positive definite, symmetric matrix,

$$||x||_A = (x^\top A x)^{\frac{1}{2}} = \left(\sum_{i,j=1}^n a_{ij} x_i x_j\right)^{\frac{1}{2}}$$

defines a norm.

• ∞ -norm:

$$||x||_{\infty} = \max_{1 \le i \le d} |x_i| \left(= \lim_{p \to \infty} ||x||_p \right)$$

 \bullet Frobenius norm (Euclidean, Schur norm):

$$A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K}),$$

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$$

• (Hölder) q-norm $(q \ge 1)$:

$$||A||_{\ell^q} = ||A||_{H,q} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^q\right)^{\frac{1}{q}}$$

• Infinity norm (∞ -norm):

$$||A||_{\ell^{\infty}} = ||A||_{H,\infty} = \max_{1 \le i,j \le n} |a_{ij}|$$

• Matrix norm:

A norm $\|\cdot\|$ on $\mathcal{M}_n(\mathbb{K})$ is a matrix norm if for all $A, B \in \mathcal{M}_n(\mathbb{K}), \|AB\| \leq \|A\| \|B\|$

• Subordinate (induced) norm:

Let $\|\cdot\|_*$ be a vector norm on \mathbb{K}^n . Then, the norm

$$||A||_* = \sup_{x \in \mathbb{K}^n \setminus \{0\}} \frac{||Ax||_*}{||x||_*}$$

is a matrix norm on $\mathcal{M}_n(\mathbb{K})$ which is said to be "subordinate" to the vector norm.

• Operator norm:

$$||A||_{a,b} = \sup_{x \neq 0} \frac{||Ax||_b}{||x||_a}$$

for $\|\cdot\|_a$ norm on \mathbb{C}^n , $\|\cdot\|_b$ norm on \mathbb{C}^m , $A \in \operatorname{Lin}(\mathbb{C}^m, \mathbb{C}^n)$. (Not necessarily matrix norms.)

• Convergence for sequences of matrices:

A sequence of matrices $(A_i)_{i\geq 1}$ converges to a limiting matrix $A\in \mathcal{M}_n(\mathbb{C})$ if, for some matrix norm $\|\cdot\|$,

$$\lim_{i \to \infty} ||A_i - A|| = 0$$

and we write $\lim_{i\to\infty} A_i = A$.

• Matrix power series:

Given a sequence $(a_i)_{i\geq 1}\subset\mathbb{C}$, the associated matrix power series is $\sum_{i=0}^{\infty}a_iA^i$.

• Analytic functions of matrices:

 $f: \mathbb{C} \to \mathbb{C}$ analytic on $\{z \in \mathbb{C}: |z| < R\}, R > 0$, written as a power series

$$f(z) = \sum_{i=0}^{\infty} a_i z^i, \ |z| < R.$$

For $A \in \mathcal{M}_n(\mathbb{C})$ with $\rho(A) < R$, we define

$$f(A) = \sum_{i=0}^{\infty} a_i A^i.$$

1.5 Algorithms for Matrix Computation/Linear Systems of Equations

• Complexity:

The complexity of a (matrix) algorithm is the number of multiplications/divisions required to execute it. For a problem of size n, write

$$N_{op}(n) = \#$$
 of mults/divs required.

• Asymptotic complexity:

Let $N_{op}(n)$ denote the complexity of the best algorithm performing a matrix operation. The bound $N_{op}(n) \leq Cn^{\alpha}, n \geq 0$ with C, α independent of n, is the asymptotic complexity of the operation, and write

$$N_{op}(n) = O(n^{\alpha})$$

• Condition number:

The condition number of a matrix $A \in \mathcal{M}_n(\mathbb{K})$ relative to a subordinate matrix norm $\|\cdot\|$ is

$$\operatorname{cond}(A) = ||A|| ||A^{-1}||.$$

• Diagonal submatrices:

 $A \in \mathcal{M}_n(\mathbb{R}), A = (a_{ij}),$ the diagonal submatrices of A are

$$\Delta^k = \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{bmatrix}, \quad k = 1, \dots, n.$$

• Splitting:

 $A \in \mathcal{M}_n(\mathbb{R})$ nonsingular has a splitting (M, N) with $M, N \in \mathcal{M}_n(\mathbb{R})$ if M is nonsingular and A = M - N.

• Iterative method:

The iterative method based on the splitting (M, N) is defined by fixing $x_0 \in \mathbb{R}^n$ and letting x_{k+1} solve

$$Mx_{k+1} = Nx_k + b, \quad k \ge 0.$$

• Convergence of an iterative method:

An iterative method converges if (x_k) converges to the exact solution x for any choice of the initial data x_0 .

• Residual and error:

For solving Ax = b with an iterative method, $r_k := b - Ax_k$ is the residual at kth iteration and $\varepsilon_k := x_k - x$ is the error after k iterations.

• Krylov space:

 $r \in \mathbb{R}^n$. For $k \geq 0$, the Krylov space associated to r (and A) is the space

$$\mathcal{K}_k = \operatorname{span}\{r, Ar, \dots, A^k r\}.$$

2 Useful Facts

2.1 Matrix Basics

• Gram-Schmidt Orthogonalization:

Let $\{x_1, \ldots, x_n\}$ be a linearly independent set of vectors in \mathbb{K}^d . Then, \exists orthonormal family $\{y_1, \ldots, y_n\} \subset \mathbb{K}^d$ s.t. $\operatorname{span}\{y_1, \ldots, y_p\} = \operatorname{span}\{x_1, \ldots, x_p\}, \ \forall 1 \leq p \leq n$.

• Dimensionality result:

Let $A \subset \mathbb{K}^d$ be a subspace. If $\{v_1, \ldots, v_k\}$, $\{w_1, \ldots, w_l\}$ are two sets of basis vectors for A, then k = l

- For $A \in \mathcal{M}_n(\mathbb{K})$, TFAE
 - i) A is invertible, i.e., $\exists B \in \mathcal{M}_n(\mathbb{K})$ s.t. AB = BA = I.
 - ii) $ker(A) = \{0\}$
 - iii) $im(A) = \mathbb{K}^n$
 - iv) $\exists B \in \mathcal{M}_n(\mathbb{K}) \text{ s.t. } AB = I_n \text{ (left inverse)}$
 - v) $\exists B \in \mathcal{M}_n(\mathbb{K}) \text{ s.t. } BA = I_n \text{ (right inverse)}$
- Property of trace:

 $A, B \in \mathcal{M}_n(\mathbb{K}), \operatorname{tr}(AB) = \operatorname{tr}(BA).$

- Properties of determinants:
 - i) $A, B \in \mathcal{M}_n(\mathbb{K}), \det(AB) = \det(A) \det(B) = \det(BA).$
 - ii) $A \in \mathcal{M}_n(\mathbb{K}), \det(A) = \det(A^\top)$
 - iii) $A \in \mathcal{M}_n(\mathbb{K})$ is invertible iff $\det(A) \neq 0$.
- Property of triangular matrices:
 - i) $T \in \mathcal{M}_n(\mathbb{K})$ lower triangular. If T^{-1} exists, it is also a lower triangular matrix with diagonal entries given as reciprocals of diagonal entries of T.
 - ii) If T' is lower triangular, TT' is also lower triangular with diagonal entries being products of diagonal entries of T and T'.
- Inner products and matrices:

$$x, y \in \mathbb{C}^d$$
,

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$

• Block matrices:

 $A = (A_{I,J}), B = (B_{I,J})$ for some partition (n_I) . Then, C = AB also has block structure $(C_{I,J})$ with

$$C_{I,J} = \sum_{k=1}^{P} A_{I,K} B_{K,J} \text{ for } 1 \le I, J \le P$$

• $\det \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} = \det(A)\det(B)$

2.2 Spectral Theory

- $\lambda \in \sigma(A)$ implies \exists eigenvector associated to λ , i.e., $\ker(A \lambda I) \neq \{0\}$.
- If $\exists x \neq 0$ with $Ax = \lambda x$, then λ is an eigenvalue of A.

• Invariance of eigenvalues:

Both the characteristic polynomial and eigenvalues are invariant under change of basis, i.e., for any $Q \in \mathcal{M}_n(\mathbb{C})$ invertible,

$$P_{QAQ^{-1}} = P_A, \ \ \sigma(QAQ^{-1}) = \sigma(A).$$

• If A: Hermitian, then all its eigenvalues are real.

• Lemma:

If $x \in \mathbb{C}^d$ satisfies $Ax = \lambda x$ for some $\lambda \in \mathbb{C}$, then $P(A)x = P(\lambda)x$ for all polynomial $P \in \mathbb{C}[x]$. In particular, $\lambda \in \sigma(A) \Rightarrow P(\lambda) \in \sigma(P(A))$.

• Cayley-Hamilton Thm:

Given $A \in \mathcal{M}_n(\mathbb{C})$. Let $P_A \in \mathbb{C}[x]$ be the characteristic polynomial of A. Then, $P_A(A) = 0$.

• Spectral Decomposition (Spectral Thm):

Suppose $A \in \mathcal{M}_n(\mathbb{C})$ has p distinct eigenvalues $\lambda_1, \ldots, \lambda_p$ with each λ_i having algebraic multiplicity n_i . Then, the generalized eigenspaces F_{λ_i} satisfy dim $F_{\lambda_i} = n_i$.

• Proposition:

Any matrix $A \in \mathcal{M}_n(\mathbb{C})$ can be reduced to (upper) triangular form.

• Schur Factorization:

For all $A \in \mathcal{M}_n(\mathbb{C})$, $\exists U \in \mathcal{M}_n(\mathbb{C})$ unitary (i.e., $UU^* = U^*U = I$) s.t. $T = U^{-1}AU$ is triangular.

• Proposition:

If $A \in \mathcal{M}_n(\mathbb{C})$ has p distinct eigenvalues $\lambda_1, \ldots, \lambda_p$, then A is diagonalizable.

• Thm:

 $A \in \mathcal{M}_n(\mathbb{C})$ is normal $\iff \exists U \in \mathcal{M}_n(\mathbb{C})$ unitary s.t. $A = U \operatorname{diag}\{\lambda_1, \dots, \lambda_n\}U^{-1}$.

• Thm:

 $A \in \mathcal{M}_n(\mathbb{C})$ is self-adjoint (Hermitian) \iff A: diagonalizable w.r.t. an orthonormal basis and has real eigenvalues.

• Thm:

 $A \in \mathcal{M}_n(\mathbb{C})$ self-adjoint. The smallest eigenvalue λ_1 of A satisfies

$$\lambda_1 = \min_{x \in \mathbb{C}^n \setminus \{0\}} R_A(x) = \min_{x \in \mathbb{C}^n, ||x|| = 1} \langle Ax, x \rangle$$

and the minimum value is attained for at least one eigenvector $x \neq 0$.

• Proposition:

 $A \in \mathcal{M}_n(\mathbb{C})$ self-adjoint with eigenvalues $\lambda_1, \ldots, \lambda_n$ in increasing order. Then, for $i = 2, \ldots, n$,

$$\lambda_i = \min_{x \perp \text{span}\{x_1, \dots, x_{i-1}\}} R_A(x)$$

where $\{x_1,\ldots,x_n\}$ are eigenvectors of A associated to eigenvalues $(\lambda_1,\ldots,\lambda_n)$, respectively.

• Courant-Fisher Thm: $A \in \mathcal{M}_n(\mathbb{C})$ self-adjoint with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. For all $i = 1, \ldots, n$,

$$\lambda_i = \max_{\{a_1, \dots, a_{i-1}\} \subset \mathbb{C}^n} \min_{x \perp \operatorname{span}\{a_1, \dots, a_{i-1}\}} R_A(x)$$

2.3 Singular Value Decomposition

• SVD Factorization:

Let $A \in \mathcal{M}_{m,n}(\mathbb{C})$ be a matrix having r positive singular values $\mu_1 \geq \mu_2 \geq \cdots \mu_r > 0$.

Set
$$\Sigma = \operatorname{diag}\{\mu_1, \dots, \mu_r\}$$
 and $\tilde{\Sigma} = \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{M}_{m,n}(\mathbb{R}).$

Then, there exist unitary matrices $\dot{U} \in \mathcal{M}_n(\mathbb{C}), V \in \mathcal{M}_m(\mathbb{C})$ s.t.

$$A = V\tilde{\Sigma}U^*$$

• Properties of SVD:

– If $A = V\tilde{\Sigma}U^*$ is a SVD factorization and μ_1, \ldots, μ_r are nonzero singular values of A,

$$A = \sum_{i=1}^{r} \mu_i v_i u_i^*$$

- Columns u_i of U are eigenvectors of A^*A , and columns v_i of V are eigenvectors of AA^* .
- $-\operatorname{rank} A = r \le \min\{m, n\}$
- Properties of the pseudoinverse:
 - i) If $rank(A) = n \le m$

$$A^{\dagger} = (A^*A)^{-1}A^*$$

so that if A is square and nonsingular, then $AA^{\dagger} = A^{\dagger}A = I$ and $A^{\dagger} = A^{-1}$.

- ii) A^{\dagger} is the unique matrix X s.t. all of the following hold
 - 1. AXA = A
 - 2. XAX = X
 - 3. $XA = (XA)^*$
 - 4. $AX = (AX)^*$
- iii) Minimum length solution to $Ax = b \Rightarrow x^{\dagger} = A^{\dagger}b$.
- Properties of fundamental spaces:
 - $-\dim(\ker A) = n \operatorname{rank} A \text{ (rank-nullity thm)}$
 - $-\dim(\operatorname{row} A) = \operatorname{rank} A \le n$
 - $-\dim(\ker A^{\top}) = m \operatorname{rank} A$
 - $\ker A = \operatorname{row}(A)^{\perp}$
 - $-\ker A^{\top} = \operatorname{col}(A)^{\perp}$
- Polar decomposition:

For all $A \in \mathcal{M}_n(\mathbb{R})$, there exists orthogonal Q and $S \in \mathcal{M}_n(\mathbb{R})$ symmetric and positive semidefinite s.t. A = QS. If A is invertible, S is positive definite.

2.4 Matrix Norms

- Comparing norms:
 - For $p \ge 1$, $x \in \mathbb{K}^d$,

$$|x_i| \le \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}}, \quad \forall i \implies ||x||_\infty \le ||x||_p$$

- For $p \ge 1$, $x \in \mathbb{K}^d$,

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^d ||x||_{\infty}^p\right)^{\frac{1}{p}} = ||x||_{\infty} d^{\frac{1}{p}}$$

- For $x \in \mathbb{K}^d$,

$$||x||_2 = \left(\sum_{i=1}^d |x_i|^2\right)^{\frac{1}{2}} \le \sum_{i=1}^d \left(|x_i|^2\right)^{\frac{1}{2}} = \sum_{i=1}^d |x_i| = ||x||_1$$

- Properties of vector norms:
 - $||x|| = ||x y + y|| \le ||x y|| + ||y||$ and $|||x|| ||y||| \le ||x y||$. In particular, $x \mapsto ||x||$ is uniformly (Lipschitz) continuous.
 - On \mathbb{R}^d , Cauchy-Schwarz: $x \cdot y \leq ||x||_2 ||y||_2$

• Equivalence of vector norms:

E: finite dimensional vector space. All norms on E are equivalent in the sense that for all norms $\|\cdot\|$, $\|\cdot\|'$, $\exists c, C > 0$ s.t. $c\|x\| \le \|x\|' \le C\|x\|$ for all $x \in E$.

- Frobenius norm is a matrix norm. $\|\cdot\|_{\ell^{\infty}}$ is not a matrix norm.
- Properties of subordinate norms:
 - All subordinate matrix norms are matrix norms. Not all matrix norms are subordinate to a vector norm. (e.g., Frobenius norm)
 - By homogeneity, for $A \in \mathcal{M}_n(\mathbb{K})$,

$$||A||_* = \sup_{\substack{x \in \mathbb{K}^n \\ ||x||_* = 1}} ||Ax||_* = \sup_{\substack{x \in \mathbb{K}^n \\ ||x||_* \le 1}} ||Ax||_*$$

- $||I_n||_* = 1$ for all vector norms $||\cdot||_*$, generating a subordinate norm.
- Proposition:

Let $\|\cdot\|$ be a subordinate matrix norm on $\mathcal{M}_n(\mathbb{K})$. Then, for $A \in \mathcal{M}_n(\mathbb{K})$, $\exists x_A \in \mathbb{K}^n \setminus \{0\}$ s.t.

$$||A|| = \frac{||Ax_A||}{||x_A||}$$

- $\tilde{x}_A = \frac{x_A}{\|x_A\|} \Rightarrow \exists x_{\text{max}} \text{ with } \|x_{\text{max}}\| = 1 \text{ s.t. } \|Ax_{\text{max}}\| = \|A\|.$
- Property of 1-norm:

Let $A \mapsto ||A||_1$ denote the matrix norm subordinate to $||\cdot||_1$ on \mathbb{K}^n . Then, for $A \in \mathcal{M}_n(\mathbb{K})$,

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

i.e., the largest column sum.

• Property of ∞ -norm:

Let $A \mapsto ||A||_{\infty}$ denote the matrix norm subordinate to $||\cdot||_{\infty}$ on \mathbb{K}^n . Then, for $A \in \mathcal{M}_n(\mathbb{K})$,

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}|$$

i.e., the largest row sum.

• Property of 2-norm:

Let $\|\cdot\|_2$ be the matrix norm subordinate to $\|\cdot\|_2$ for $A \in \mathcal{M}_n(\mathbb{K})$. This is also called the spectral norm. Then, $\forall A \in \mathcal{M}_n(\mathbb{K})$,

$$||A||_2 = ||A^*||_2 = \mu_1$$

where $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_r > 0$ are nonzero singular values of A for $A \neq 0$.

• Lemma:

If $U \in \mathcal{M}_n(\mathbb{C})$ is unitary $(UU^* = U^*U = I)$, then for all $A \in \mathcal{M}_n(\mathbb{C})$,

$$||UA||_2 = ||AU||_2 = ||A||_2$$

• Properties of spectral radius:

- $-A \mapsto \rho(A)$ is not a norm on $\mathbb{C}^{n \times n}$.
- If $A \in \mathcal{M}_n(\mathbb{C})$ is a normal matrix, then $||A||_2 = \rho(A)$.
- If $A \mapsto ||A||$ is a matrix norm defined on $\mathcal{M}_n(\mathbb{C})$, then $\rho(A) \leq ||A||$ for all $A \in \mathcal{M}_n(\mathbb{C})$.
- Given $A \in \mathcal{M}_n(\mathbb{C})$ and $\varepsilon > 0$, there exists a subordinate matrix norm $B \mapsto ||B||_{A,\varepsilon}$ s.t. $||A||_{A,\varepsilon} \le \rho(A) + \varepsilon$.

• Proposition:

Let $A = V\tilde{\Sigma}U^*$ be an SVD factorization of $A \in \mathcal{M}_{m,n}(\mathbb{C})$ with r nonzero singular values of A arranged in decreasing order.

For each $1 \leq k \leq r$, the matrix $A_k = \sum_{i=1}^k \mu_i v_i u_i^*$ satisfies

$$||A - A_k||_2 \le ||A - X||_2$$

for all $X \in \mathcal{M}_{m,n}(\mathbb{C})$ with rank X = k. Moreover, $||A - A_k||_2 = \mu_{k+1}$.

• Proposition:

 $A \in \mathcal{M}_n(\mathbb{C})$. Then, TFAE

- i) $A^i \to 0$ as $i \to \infty$.
- ii) $A^i x \to 0$ as $i \to \infty, \forall x \in \mathbb{C}^n$.
- iii) $\rho(A) < 1$.
- iv) There is a subordinate matrix norm $\|\cdot\|$ with $\|A\| < 1$.
- Theorem:

Suppose $(a_i) \subset \mathbb{C}$ defines a power series in \mathbb{C} with radius of convergence $R \to 0$, $\sum_{i=0}^{\infty} a_i z^i$. Then, for any $A \in \mathcal{M}_n(\mathbb{C})$ with $\rho(A) < R$, the series

$$\sum_{i=0}^{\infty} a_i A^i$$

converges in $\mathcal{M}_n(\mathbb{C})$.

• Proposition:

 $A \in \mathcal{M}_n(\mathbb{C}), \, \rho(A) < 1.$ Then, $(I - A) \in \mathcal{M}_n(\mathbb{C})$ is nonsingular with

$$(I - A)^{-1} = \sum_{i=0}^{\infty} A^i.$$

2.5 Algorithms for Matrix Computation/Linear Systems of Equations

• Strassen's algorithm:

We can compute AB using 7 (block matrix) multiplications.

• Theorem:

Each of the following has the same asymptotic complexity in the sense that if any has an algorithm computing with complexity $O(n^{\alpha})$, $\alpha \geq 2$, then so do the other three:

- (i) $A, B \rightsquigarrow C = AB$ (matrix multiplication)
- (ii) $A \leadsto A^{-1}$ (taking the inverse)
- (iii) $A \leadsto \det(A)$ (computing determinant)
- (iv) $A, b \rightsquigarrow x = A^{-1}b$ (solving linear system)
- Theorem:

 $A \in \mathcal{M}_n(\mathbb{C}), b \in \mathbb{C}^n. \ x \in \mathbb{C}^n \text{ s.t. } Ax = b.$

-A: nonsingular $\iff \exists !x = A^{-1}b$.

- -A: singular \Rightarrow either
 - (1) $b \in \text{im } A$, $\{x_0 + v : v \in \text{ker } A\}$; or,
 - (2) $b \notin \text{im } A$, Ax = b has no solutions.
- Cramer's formula:

 $A \in \mathcal{M}_n(\mathbb{R})$ nonsingular, with columns a_1, \ldots, a_n and consider $Ax = b, b \in \mathbb{R}^n$. The solution $x = (x_1, \ldots, x_n)$ is given by

$$x_i = \frac{\det \begin{bmatrix} a_1 & a_2 & \cdots & a_{i-1} & b & a_{i+1} & \cdots & a_n \end{bmatrix}}{\det(A)}$$

i.e., replacing ith column with b for the determinant in the numerator.

- Facts about simple matrices
 - 1. A: diagonal $\rightsquigarrow Ax = b$ requires O(n).
 - 2. A: unitary $\rightsquigarrow Ax = b$ requires $O(n^2)$.
 - 3. A: lower triangular $\rightsquigarrow Ax = b$ requires $O(n^2)$ (via forward substitution).
 - 4. A: upper triangular $\rightsquigarrow Ax = b$ requires $O(n^2)$ (via backward substitution).
- Properties of condition number:
 - 1. $\operatorname{cond}(A) \ge 1$
 - 2. Perturbation bound:

Suppose Ax = b. $A_{\varepsilon} = A + \varepsilon B$, $b_{\varepsilon} = b + \varepsilon \gamma$ for some $B \in \mathcal{M}_n(\mathbb{K})$, $\gamma \in \mathbb{K}^n$. Consider $A_{\varepsilon}x_{\varepsilon} = b_{\varepsilon}$. Then, the perturbation bound is

$$\frac{\|x_{\varepsilon} - x\|}{\|x\|} \le \operatorname{cond}(A) \left(\frac{\|A_{\varepsilon} - A\|}{\|A\|} + \frac{\|b_{\varepsilon} - b\|}{\|b\|} \right) + O(\varepsilon^2)$$

3. Proposition:

 $A \in \mathcal{M}_n(\mathbb{R}), b \in \mathbb{R}^n \setminus \{0\}, \delta_b \in \mathbb{R}^n$. If $Ax = b, A(x + \delta_x) = b + \delta_b$, then

$$\frac{\|\delta_x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\delta_b\|}{\|b\|}$$

- 4. Equivalence of condition numbers:
 - $-n^{-1}\operatorname{cond}_2(A) \le \operatorname{cond}_1(A) \le n\operatorname{cond}_2(A)$
 - $-n^{-1}\operatorname{cond}_{\infty}(A) \le \operatorname{cond}_{2}(A) \le n\operatorname{cond}_{\infty}(A)$
 - $-n^{-2}\operatorname{cond}_1(A) < \operatorname{cond}_{\infty}(A) < n^2\operatorname{cond}_1(A)$
- 5. A: nonsingular, $\operatorname{cond}(A) = \operatorname{cond}(A^{-1})$.
- 6. $\alpha \in \mathbb{C} \setminus \{0\}, \operatorname{cond}(\alpha A) = \operatorname{cond}(A)$
- 7. $\operatorname{cond}_2(A) = \frac{\mu_1(A)}{\mu_n(A)}$ where $\mu_1(A)$: the largest, $\mu_n(A)$: the smallest singular value
- 8. A: normal, $\operatorname{cond}_2(A) = \rho(A)\rho(A^{-1}) = \frac{|\lambda_{\max}|}{|\lambda_{\min}|}$
- 9. U: unitary, $\operatorname{cond}_2(A) = 1$
- 10. $\rho(A)\rho(A^{-1}) \le \operatorname{cond}(A)$
- 11. A: normal, $\operatorname{cond}_2(A) \leq \operatorname{cond}(A)$ for any condition number

• Lemma:

 $A \in \mathcal{M}_n(\mathbb{C})$: nonsingular, then

$$\frac{1}{\text{cond}_2(A)} = \inf \left\{ \frac{\|A - B\|_2}{\|A\|_2} : B \in S_n(\mathbb{C}) \right\}.$$

where $S_n(\mathbb{C}) = \{ B \in \mathcal{M}_n(\mathbb{C}) : B \text{ singular} \}.$

• Theorem (Gaussian elimination):

 $A \in \mathcal{M}_n(\mathbb{C})$. $\exists M \in \mathcal{M}_n(\mathbb{C})$ nonsingular s.t. T = MA is upper triangular.

• Proposition (LU decomposition):

 $A \in \mathcal{M}_n(\mathbb{R})$ s.t. all diagonal submatrices Δ^k , $k = 1, \ldots, n$ are nonsingular.

Then, $\exists ! L, U \in \mathcal{M}_n(\mathbb{R})$ s.t. $L = (\ell_{ij}), \ell_{ii} = 1, \forall 1 \leq i \leq n$ lower triangular, $U = (u_{ij})$ upper triangular with A = LU.

(cf. Matrix analog of Gaussian elimination.)

• Theorem (Cholesky decomposition):

 $A \in \mathcal{M}_n(\mathbb{R})$ symmetric, p.d. Then, $\exists ! B$ real lower triangular s.t. $A = BB^{\top}$ with diagonal entries strictly positive.

• Theorem (QR decomposition):

 $A \in \mathcal{M}_n(\mathbb{R})$ nonsingular. Then, $\exists ! (Q,R)$ s.t. $Q \in \mathcal{M}_n(\mathbb{R})$ orthogonal, $R \in \mathcal{M}_n(\mathbb{R})$ upper triangular with A = QR.

(cf. Matrix analog of Gram-Schmidt process.)

 $A \in \mathcal{M}_{n,p}(\mathbb{R}), b \in \mathbb{R}^n$. Then, $x \in \mathbb{R}^p$ minimizes $||b - Ax||_2 \iff A^*Ax = A^*b$.

• Theorem:

 $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Then, $\exists x \in \mathbb{R}^p$ s.t. $A^*Ax = A^*b$ (the normal equation).

• Proposition:

 $A^*Ax = A^*b$ has exactly one solution \iff ker $A = \{0\}$.

• Theorem:

The iterative method associated to the splitting (M, N) converges $\iff \rho(M^{-1}N) < 1$.

• Richardson's method/Gradient descent/Steepest descent:

Splitting: $M = \alpha^{-1}I, N = \alpha^{-1}I - A$.

Iteration matrix: $B_{\alpha} = M^{-1}N = I - \alpha A$. (cf. converges iff $0 < \alpha < \frac{2}{\rho(A)}$.)

• Jacobi method:

Splitting: $M = D = \operatorname{diag}(a_{11}, \dots, a_{nn}), N = D - A.$

Iteration matrix: $J = M^{-1}N = I - D^{-1}A$.

(cf. well defined if det $D = a_{11} \cdot a_{nn} \neq 0$.)

• Theorem:

A: Hermitian, p.d. If (M, N): splitting of A, then $M^* + N$: Hermitian. If $(M^* + N)$: p.d., then $\rho(M^{-1}N) < 1.$

• Gauss-Seidel method:

 $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$, write A = D - E - F with $D = \operatorname{diag}(a_{11}, \ldots, a_{nn}) - E$: lower triangular part of A, and -F: upper triangular part of A.

Splitting: M = D - E, N = F.

Iteration matrix: $G = M^{-1}N = (D - E)^{-1}F$.

• Proposition:

 $f(x) = \frac{1}{2}\langle Ax, x \rangle - \langle b, x \rangle$ for $A \in \mathcal{M}_n(\mathbb{R})$ symmetric, $b \in \mathbb{R}^n$. Then, $(\nabla f)(x) = Ax - b$. Moreover, A: p.d. \Rightarrow f admits a unique minimum x_0 solving $Ax_0 = b$.

• Proposition:

A: real symmetric p.d. $f(x) = \frac{1}{2}\langle Ax, x \rangle - \langle b, x \rangle$. Then, if $F \subset \mathbb{R}^n$ is a subspace of \mathbb{R}^n , then $\exists x_0 \in F \text{ s.t. } f(x_0) \leq f(x), \forall x \in F$. Moreover, x_0 is the unique vector in F s.t. $\langle Ax_0 - b, y \rangle = 0, \forall y \in F$.

• Theorem:

A: real symmetric p.d. $f(x) = \frac{1}{2}\langle Ax, x \rangle - \langle b, x \rangle$. Then, $x \in \mathbb{R}^n$ minimizes $f \iff (\nabla f)(x) = 0$ and if $x \in \mathbb{R}^n$ s.t. $(\nabla f)(x) \neq 0$ then $\forall \alpha \in \left(0, \frac{2}{\rho(A)}\right), f(x - \alpha \nabla f(x)) < f(x)$.

• Properties of Krylov spaces:

1.
$$\mathcal{K}_k \subset \mathcal{K}_{k+1}, \forall k \geq 0$$
.

2.
$$\forall r_0 \in \mathbb{R}^n \setminus \{0\}, \exists k_0 \in \{0, \dots, n-1\},$$
 "Krylov critical dimension" s.t. $\dim \mathcal{K}_k = k+1$ for $0 \le k \le k_0$, and $\dim \mathcal{K}_k = k_0+1$ for $k \ge k_0$.

- 3. The gradient iteration and its residual $r_k = b Ax_k$ satisfy
 - (i) $r_k \in \mathcal{K}_k(r_0, A)$
 - (ii) $x_{k+1} \in [x_0 + \mathcal{K}_k] = \{x : x x_0 \in \mathcal{K}_k\}$ (the subspace).