STAT31430 Applied Linear Algebra

A Note of Caution:

These notes are created solely for my personal use and do not accurately represent the pedagogy or
the material covered for the course named above. I have taken this class during Fall 2022, which may
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or may not have identical structure in future quarters. All errors contained are my own.
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1.1 Matrix Basics
e Linearly independent:
Vai,...,a, €K, ajxy +asze+--4+apr,=0=2a1=--=a, =0

e Orthonormal:
e Kernel:

For A € M, ,(K),

ker(A) = {z € KP : Az =0} C K?

e Image:

For A € M,, ,(K),

im(A) ={Az:z € K’} CK"

e Dimension:

The number of elements in a spanning linearly independent set of vectors, i.e., a basis.
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e Rank:
rank A = dim(im A)

e Trace:
A= (aij)lgi,jgna tI‘(A) = Z?:l Qi

e Permutation:
o:{1,...,n} = {1,...,n} such that it is both injective and surjective, i.e., bijective.

e Determinant:

For A = (Clij) € MH(K)7
det(4) = 3" <(0) [ aiwe
=1

ocES,
where () = (—1)P(?) | the signature of o, and p(c) = > i<i<j<n Ve(i, ), the inversion counter.

e Adjoint/conjugate transpose/Hermitian transpose: o
For A = (a;;) € My(C), A* € M,,(C) given by A* = AT = (aj;)

o Ae M,(C)is
— self-adjoint (or Hermitian) if A = A*.
— unitary if A7! = A%, e, AA* =A*A=1
— normal if AA* = A*A.
e Ae M,(R) is
— symmetric (= self-adjoint) if A= AT.
— orthogonal (= unitary) if A=! = AT ie., AAT = ATA=1.
— normal if AAT = AT A.

1.2 Spectral Theory

e Characteristic polynomial:
For A € M, (C),
Py:C—C, Psg(A\) =det(A— )

e Eigenvalues:
The roots of the characteristic polynomial, i.e.,

A€eCst. det(A—A)=0

e Spectrum:
o(A)={AeC:det(A—-\)=0}

e Algebraic multiplicity: The largest k& such that

Pa(z) = (2 = N)*Q(2)

e Eigenvector:
A nonzero vector x € C" s.t. Ax = Az for some A € (A).

e Spectral radius:
For A € M,,(C), the spectral radius of A is

A) = A
p(A) Ag%)\ |
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e Eigenspace:
For A € 0(A4), A € M, (C), the eigenspace of C™ associated to A is

Ey:=ker(A- ) ={ze€C": Az = Az}

e Generalized eigenspace:
Fy = U ker(A — AI)F
k>1

e Matrix polynomial:
For polynomial P € C[z] = {ag+ai1zx+asz?®+---+aqz? : ay,...,aq9 € C,d > 0} and A € M,,(C),
then P : M, (C) = M,,(C) determined by

P(A) =apl + a1 A+ ag A 4 - + agA?

is the corresponding matrix polynomial.

e Direct sum:
If F1,...,F, C C" are subspaces, we write

if any « € C™ can be written uniquely as x = Zle z,, ;€ F, 1<i<p.

e Reduction to triangular form:
A € M, (C) can be reduced to upper (lower) triangular form if 3P € M,,(C) nonsingular and an
upper (lower) triangular matrix T s.t. A= PTP~.

e Similar matrices:
A and T are similar matrices if 3P invertible s.t. A = PTP~ L.

e Diagonalizability:
A is said to be diagonalizable if A = PDP~! for suitable P and D diagonal.

e Rayleigh quotient:
A € M,,(C) self-adjoint (Hermitian). The Rayleigh quotient is the function R4 : C™\ {0} — R
defined by

_ (Az,2)
Ba@ =0

1.3 Singular Value Decomposition

e Positive definiteness:
A € M, (C): Hermitian is positive definite if every eigenvalue A € o(A) satisfies A > 0.

e Positive semidefiniteness:
A € M, (C): Hermitian is positive definite if every eigenvalue \ € o(A) satisfies A > 0.

e Singular values:
The singular values of A € M, ,,(C) are the square roots of the eigenvalues of A*A.

e Moore-Penrose pseudoinverse: y
Given a matrix A € M,, ,(C) with SVD A = VXU*, the pseudoinverse AT € M, (C) is the
matrix

¥ 1o

f_ sty st
A_UEV,E_[O 0

] € Mp.m(R)



STAT31430 Applied Linear Algebra Seung Chul (Eric) Lee

e Fundamental spaces of matrices:

ai
AeMpaR)=[ar -+ an] =
am
— Column space: col(A) = span{aq,...,an}

Kernel or null space: ker(A4) = null(4) = {x € R" : Az = 0}

Row space: row(A) = span{ay,...,ad,} = col(AT)

Left null space: ker(AT) = {y € R™: ATy =0}

1.4 Matrix Norms

e Norm:
A norm ||| : K¢ — [0, 00) is a function satisfying

i. positive definiteness: ||z|| > 0 with ||z| = 0 iff z = 0, Vo € K%
ii. homogeneity: |[Az| = |A|||z||, Vz € K4\ €K
iii. triangle inequality: ||z +y| < ||z|| + |yl, Vz,y € K¢

e Inner product:
(+,+,) an inner product on V' x V' — C is a map satisfying

i (v,v) >0, YveV

il (pwy + agws, vy = ag{wy, v) + ag(wa, v), wi,wa,v € V,ay,as € C
ili. (v,0) =0 <= v=0eV
iv. (v,w) =(w,v), Yo,weV

e Fuclidean norm: )

d 2
]2 = <Zmil2>
=1

e p-norm:

e Weighted p-norm:
d »
||pr,w = (Zwl|xl|p> , W= (wl, . ,U)d), w; >0, Vi=1,.. .,d
i=1

e Norm using matrix:
For A: real, positive definite, symmetric matrix,

1
2

i n
lz|la = (;L"TAx)z = Z @i ;T

ij=1
defines a norm.

® OO-Norm:

lefloe = masx Ja (= lim ||x|p)
1<:i<d p—00
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1.5

Frobenius norm (Euclidean, Schur norm):

A = (aij) S Mn(K),

Nl

JAlr = [ D0 layl?

i=1 j=1

(Holder) g-norm (g > 1):

1
q

1Alles = 1 Allmg = | D lais|?

i=1 j=1

Infinity norm (co-norm):
Al = Al = . Jais

Matrix norm:
A norm ||-|| on M,,(K) is a matrix norm if for all A, B € M, (K), ||[AB] < ||A|/||B||
Subordinate (induced) norm:

Let |||« be a vector norm on K™. Then, the norm

Azl
jAlL = sup A7
zeKn\{0} ||$H*

is a matrix norm on M, (K) which is said to be "subordinate" to the vector norm.

Operator norm:

A
4l = sup 12l
z#0 Hx”a
for |||l norm on C™, ||-||p norm on C™, A € Lin(C™,C"). (Not necessarily matrix norms.)

Convergence for sequences of matrices:
A sequence of matrices (4;);>1 converges to a limiting matrix A € M, (C) if, for some matrix
norm |||,

lim [[4; — A =0

71— 00

and we write lim A4; = A.
1— 00

Matrix power series:
Given a sequence (a;);>1 C C, the associated matrix power series is >~ a; A".

Analytic functions of matrices:
f:C — C analytic on {z € C: |z] < R}, R > 0, written as a power series

f(z) = Zawﬁ |z| < R.
=0
For A € M,,(C) with p(A) < R, we define

f(A) = a; A"
=0

Algorithms for Matrix Computation/Linear Systems of Equations

Complexity:
The complexity of a (matrix) algorithm is the number of multiplications/divisions requried to
execute it. For a problem of size n, write

Nop(n) = # of mults/divs required.
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e Asymptotic complexity:
Let Nop(n) denote the complexity of the best algorithm performing a matrix operation. The
bound Nyp(n) < Cn®,n > 0 with C,« independent of n, is the asymptotic complexity of the
operation, and write
Nop(n) = O(n?)

e Condition number:
The condition number of a matrix A € M,,(K) relative to a subordinate matrix norm ||-|| is

cond(A) = [|A[[[|A7"].

e Diagonal submatrices:
A e M, (R), A= (a;;), the diagonal submatrices of A are

Ak: . '.. . s k'::l,...7n.

e Splitting:
A € M, (R) nonsingular has a splitting (M, N) with M, N € M, (R) if M is nonsingular and
A=M—N.

e Iterative method:
The iterative method based on the splitting (M, N) is defined by fixing zo € R™ and letting zx11
solve
Mzpy1 =Nz +b, kE>0.

e Convergence of an iterative method:
An iterative method converges if (xj) converges to the exact solution x for any choice of the
initial data xg.

e Residual and error:
For solving Ax = b with an iterative method, r; := b — Az, is the residual at kth iteration and
€k := T — x is the error after k iterations.

e Krylov space:
r € R™. For k > 0, the Krylov space associated to r (and A) is the space

Ky = span{r, Ar, ..., A*r}.
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2 Useful Facts

2.1

Matrix Basics

e Gram-Schmidt Orthogonalization:

2.2

Let {x1,...,7,} be a linearly independent set of vectors in K%. Then, 3 orthonormal family
{y1,-- -, yn} C K s.t. span{y1,...,yp} = span{z1,...,z,}, V1 < p < n.

Dimensionality result:
Let A C K be a subspace. If {vy,...,vx}, {wy,...,w;} are two sets of basis vectors for A, then
k=1

For A € M,,(K), TFAE
i) A is invertible, i.e., 3B € M, (K) s.t. AB=BA=1.
ii) ker(A) = {0}
iii) im(4) = K"
iv) 3B € M, (K) s.t. AB = I,, (left inverse)
v) 3B € M, (K) s.t. BA = I,, (right inverse)

Property of trace:
A, B € M,(K), tr(AB) = tr(BA).

Properties of determinants:
i) A,B € M, (K), det(AB) = det(A) det(B) = det(BA).
ii) A€ My(K), det(A) = det(AT)
iii) A € M, (K) is invertible iff det(A) # 0.
Property of triangular matrices:

i) T € M, (K) lower triangular. If 71 exists, it is also a lower triangular matrix with diagonal
entries given as reciprocals of diagonal entries of T.

i) If T’ is lower triangular, TT" is also lower triangular with diagonal entries being products
of diagonal entries of T and T".

Inner products and matrices:
x,y € C%,
(Az,y) = (z, A%y)

Block matrices:
A= (A1), B=(By,y) for some partition (ny). Then, C = AB also has block structure (Cr, s)
with

P
Cry= ZALKBK,J for1<I,J<P
k=1

det {A C} — det(A) det(B)

0 B
Spectral Theory

A € 0(A) implies 3 eigenvector associated to A, i.e., ker(A — AI) # {0}.

If 9z # 0 with Az = Az, then ) is an eigenvalue of A.
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2.3

Invariance of eigenvalues:
Both the characteristic polynomial and eigenvalues are invariant under change of basis,
ie., for any Q € M, (C) invertible,

PQAQ—l == PA7 O'(QAQ_l) = O'(A)

If A: Hermitian, then all its eigenvalues are real.

Lemma:
If x € C? satisfies Az = Az for some X\ € C, then P(A)x = P(\)z for all polynomial P € Clx].
In particular, A € o(A) = P(X\) € o(P(A4)).

Cayley-Hamilton Thm:
Given A € M,,(C). Let P4 € C[z] be the characteristic polynomial of A. Then, P4(A) = 0.

Spectral Decomposition (Spectral Thm):
Suppose A € M,,(C) has p distinct eigenvalues A1, ..., A\, with each A; having algebraic multi-
plicity n;. Then, the generalized eigenspaces F), satisfy dim Fy, = n;.

Proposition:
Any matrix A € M, (C) can be reduced to (upper) triangular form.

Schur Factorization:
For all A € M,,(C), 3U € M,,(C) unitary (i.e., UU* = U*U = I) s.t. T = U~ AU is triangular.

Proposition:

If A e M, (C) has p distinct eigenvalues A1, ..., \,, then A is diagonalizable.
Thm:

A € M, (C) is normal < 33U € M,,(C) unitary s.t. A= U diag{\y,...,\,JUL.
Thm:

A € M, (C) is self-adjoint (Hermitian) <= A: diagonalizable w.r.t. an orthonormal basis and
has real eigenvalues.

Thm:
A € M, (C) self-adjoint. The smallest eigenvalue A\; of A satisfies

A\ = in R = i Az,
1= min  Ra(z)=  min  (Az,7)

and the minimum value is attained for at least one eigenvector x # 0.

Proposition:
A € M, (C) self-adjoint with eigenvalues A1, ..., A, in increasing order. Then, for i = 2,...,n,
Ai = min Ra(z)
zlspan{zi,..., Tio1}
where {x1,...,x,} are eigenvectors of A associated to eigenvalues (A1, ..., A,), respectively.
Courant-Fisher Thm: A € M,,(C) self-adjoint with eigenvalues A\; < A < --- < A,. For all

t=1,...,n,
A = max min Ra(z)

- {a1,...,a;i—1}CC" z Lspan{ai,...,a;—1}
Singular Value Decomposition

SVD Factorization:

Let A € M., (C) be a matrix having r positive singular values py > pa > -+ p > 0.
Set ¥ = diag{y1, ..., } and ¥ = B} 8 € My, n(R).

Then, there exist unitary matrices U € M,,(C), V € M,,(C) s.t.

A=VXU*
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e Properties of SVD:

— If A=VXU* is a SVD factorization and 1, . ..,y are nonzero singular values of A,
T
A= Z iUy
i=1

— Columns u; of U are eigenvectors of A* A, and columns v; of V' are eigenvectors of AA*.
— rank A = r < min{m, n}
e Properties of the pseudoinverse:

i) If rank(A) =n<m
Al = (A7 A) 1A

so that if A is square and nonsingular, then AAT = ATA =T and AT = A~1.
ii) AT is the unique matrix X s.t. all of the following hold
1. AXA=A
2. XAX =X
3. XA=(XA)*
4. AX = (AX)*
iii) Minimum length solution to Ax = b = z7 = ATb.
e Properties of fundamental spaces:

— dim(ker A) = n — rank A (rank-nullity thm)

dim(row A) = rank A <n
— dim(ker A7) = m — rank A
— ker A = row(A4)*+

— ker AT = col(A)*+

e Polar decomposition:
For all A € M,,(R), there exists orthogonal @ and S € M,,(R) symmetric and positive semidef-
inite s.t. A = @QS. If A is invertible, S is positive definite.

2.4 Matrix Norms
e Comparing norms:

— Forp>1, zcK?

=

d
|zi] < (leilp) » Vi = [zl < l2llp
i=1

— Forp>1, zecK?

|=

1

d P d P
1
zllp = (ZI%I”) < <Z|wllﬁo> = [|lzllood?
i=1 i=1
— For x € ]Kd,

i=1

1
d 2 d d
1
l[z]l2 = (ZI%F) <D () = Jail = llalh
i=1 i=1
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Properties of vector norms:

=zl =llz =y +yl < llz =yl + llyll and [z —llylll < [z =yl
In particular, x — ||z|| is uniformly (Lipschitz) continuous.

— On R4, Cauchy-Schwarz: z -y < ||z||2]|yll2

Equivalence of vector norms:
E: finite dimensional veector space. All norms on E are equivalent in the sense that for all norms
-l 1115 3e, € > 0 s.t. c||lz]] < |lz||" < C||z|| for all x € E.

Frobenius norm is a matrix norm. ||-|[¢~ is not a matrix norm.
Properties of subordinate norms:

— All subordinate matrix norms are matrix norms. Not all matrix norms are subordinate to
a vector norm. (e.g., Frobenius norm)

— By homogeneity, for A € M,,(K),

[All« = sup [|Az]. = sup [|Az].
zeKn reKn

Iz ll«=1 lzll« <1

— |In]l« = 1 for all vector norms ||-||«, generating a subordinate norm.

Proposition:
Let ||-|| be a subordinate matrix norm on M, (K). Then, for A € M, (K), Jz4 € K"\ {0} s.t.

_ [[Aaal

1Al
lzall

Ta = 147 = Imax With [|[Zmax[| = 1 s.t. [[Azmax| = [|A]l.

Property of 1-norm:
Let A — ||A||; denote the matrix norm subordinate to |||y on K™. Then, for A € M, (K),

n
Al = ggjagxnz;\aijl
1=

i.e., the largest column sum.

Property of co-norm:
Let A — ||Al|co denote the matrix norm subordinate to ||-|| on K”. Then, for A € M, (K),

n
[Allo = 1I£§§><n;|aij|
=

i.e., the largest row sum.

Property of 2-norm:
Let ||-|]|2 be the matrix norm subordinate to ||-||2 for A € M,,(K). This is also called the spectral
norm. Then, VA € M, (K),

[All2 = [[A%]l2 = 1

where py > po > -+ > p, > 0 are nonzero singular values of A for A # 0.

Lemma:
If U € M,,(C) is unitary (UU* = U*U = I), then for all A € M,,(C),

[UA]2 = [[AU]l2 = [ All2

Properties of spectral radius:

10



STAT31430 Applied Linear Algebra Seung Chul (Eric) Lee

2.5

— A~ p(A) is not a norm on C™*".
— If A e M, (C) is a normal matrix, then ||A]2 = p(4).
— If A— ||A] is a matrix norm defined on M,,(C), then p(A) < ||A4|| for all A € M,,(C).

— Given A € M, (C) and € > 0, there exists a subordinate matrix norm B — | Bl|4. s.t.
A4, < p(A) +e.

Proposition:

Let A = VXU* be an SVD factorization of A € M, (C) with 7 nonzero singular values of A
arranged in decreasing order.

For each 1 < k < r, the matrix A = Zle piv;u; satisfies

|A—Aill2 < [|[A—X|2

for all X € M,, ,(C) with rank X = k. Moreover, |4 — Ak|l2 = tkt1-

Proposition:
A S Mn((c) Then, TFAE

i) A" - 0asi— .
ii) A’z — 0 as i — oo,Vz € C".
iii) p(A) < 1.
iv) There is a subordinate matrix norm ||-|| with || A|| < 1.

Theorem:
Suppose (a;) C C defines a power series in C with radius of convergence R — 0, .7, a; 2t
Then, for any A € M,,(C) with p(A) < R, the series

i aiAi

i=0
converges in M,,(C).

Proposition:
A e M, (C), p(A) < 1. Then, (I — A) € M, (C) is nonsingular with

(I-A)""1'= iAi.
1=0

Algorithms for Matrix Computation/Linear Systems of Equations

Strassen’s algorithm:
We can compute AB using 7 (block matrix) multiplications.

Theorem:
Each of the following has the same asymptotic complexity in the sense that if any has an algorithm
computing with complexity O(n®),« > 2, then so do the other three:

(i) A, B ~» C = AB (matrix multiplication)
(i) A~ A1 (taking the inverse)
(iii) A ~» det(A) (computing determinant)
(iv) A,b~ x = A71b (solving linear system)

Theorem:
AeM,(C),beC" zeC"st. Az =b.

— A: nonsingular <= Jlz = A~ b

11
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— A: singular = either

(1) beimA, {zo+v:v €ker A}; or,
(2) b¢im A, Az = b has no solutions.

e Cramer’s formula:

A € M, (R) nonsingular, with columns a1, ...,a, and consider Az = b,b € R™. The solution
x = (x1,...,2,) is given by
. det [al as -+ Aj—1 b (078 an]
v det(A)

ie.

, replacing ith column with b for the determinant in the numerator.

e Facts about simple matrices

1.
2.
3.
4.

A: diagonal ~ Az = b requires O(n).
A: unitary ~ Az = b requires O(n?).
A: lower triangular ~ Az = b requires O(n?) (via forward substitution).

A: upper triangular ~ Az = b requires O(n?) (via backward substitution).

e Properties of condition number:

1.
2.

10.

11

cond(A) > 1

Perturbation bound:
Suppose Az = b. Ac = A+ ¢eB,b. = b+ ey for some B € M, (K),v € K*. Consider
A.x. = b.. Then, the perturbation bound is

. o (Lot It o
———— < cond(A) + + O(e%)
1Al 6]l (

. Proposition:
Ae M,(R),b e R"\ {0},0, € R™. If Az =b, A(x + d,) = b+ &, then
11z || 1195l
< cond(A)——
] el

. Equivalence of condition numbers:
— n~tcondy(A) < cond; (A) < ncondy(A)
— n~!condy (A) < condy(A) < ncondy (A)
— n~2cond;(A) < condy (A) < n?cond; (A)
. A: nonsingular, cond(A4) = cond(A~1).
. a € C\ {0}, cond(aA) = cond(A)
condy(4) = % where p1(A): the largest, p,(A): the smallest singular value

. A: normal, condy(A) = p(A)p(A~1) = |‘§:?:|‘

. U: unitary, conda(A) =1
p(A)p(A~1) < cond(4)

. A: normal, conds(A) < cond(A) for any condition number

12
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e Lemma:
A € M,,(C): nonsingular, then
1 o [IIA= Bl }
——— — =inf¢+—F"=:B€S5,(C);.
stz = ©

where S, (C) = {B € M,,(C) : B singular}.

e Theorem (Gaussian elimination):
A e M, (C). 3M € M, (C) nonsingular s.t. T = M A is upper triangular.

e Proposition (LU decomposition):
A € M, (R) s.t. all diagonal submatrices A¥, k =1,...,n are nonsingular.
Then, 3L, U € M,(R) s.t. L = (¢4;;),4; = 1,V1 < i < n lower triangular, U = (u;;) upper
triangular with A = LU.
(cf. Matrix analog of Gaussian elimination.)

e Theorem (Cholesky decomposition):
A € M, (R) symmetric, p.d. Then, 3'B real lower triangular s.t. A = BB with diagonal entries
strictly positive.

e Theorem (QR decomposition):
A € M, (R) nonsingular. Then, I(Q, R) s.t. Q@ € M,(R) orthogonal, R € M, (R) upper
triangular with A = QR.
(cf. Matrix analog of Gram-Schmidt process.)

e Lemma:
Ae M, ,(R),b € R". Then, z € RP minimizes ||b — Az|ls < A*Azx = A*D.

e Theorem:
A e M, ,(R). Then, 3z € R? s.t. A* Az = A*b (the normal equation).

e Proposition:
A* Ax = A*D has exactly one solution <= ker A = {0}.

e Theorem:
The iterative method associated to the splitting (M, N) converges <= p(M~IN) < 1.

e Richardson’s method/Gradient descent/Steepest descent:
Splitting: M = a 'I,N = a~'I — A.
Iteration matrix: B, = M~ !N =1 — aA.
(cf. converges iff 0 < a < ﬁ.)

e Jacobi method:
Splitting: M = D = diag(a11,...,ann), N = D — A.
Iteration matrix: J =M 'N =1 - D 1A,
(cf. well defined if det D = a1 - apnn # 0.)

e Theorem:
A: Hermitian, p.d. If (M, N): splitting of A, then M* + N: Hermitian. If (M* 4+ N): p.d., then
p(M~IN) < 1.

e Gauss-Seidel method:
A = (aij) € Mp(R), write A = D — E — F with D = diag(a11,...,ann) —E: lower triangular
part of A, and —F": upper triangular part of A.
Splitting: M =D —-E,N=F.
Iteration matrix: G = M~'N = (D — E)~'F.

e Proposition:
f(z) = 3(Az,z) — (b, z) for A € M,,(R) symmetric, b € R". Then, (Vf)(z) = Az —b. Moreover,
A: p.d. = f admits a unique minimum z( solving Azy = b.

13
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e Proposition:
A: real symmetric p.d. f(z) = $(Az,z) — (b,z). Then, if F C R" is a subspace of R", then
Jzg € F s.t. f(xo) < f(x),Vx € F. Moreover, xq is the unique vector in F s.t. (Axg—b,y) =
0,Vy € F.

e Theorem:
A: real symmetric p.d. f(z) = 3(Az,z) — (b,z). Then, z € R" minimizes f <= (Vf)(z)=0
and if 2 € R™ s.t. (Vf)(z) # 0 then Va € (0, ﬁ) flo —aVf(z) < f(z).
e Properties of Krylov spaces:
1. K C Kgy1,Yk > 0.

2. Vrg € R™\ {0}, 3ko € {0,...,n — 1}, "Krylov critical dimension" s.t.
dim K, =k +1for 0 < k < ko, and dim Ky = ko + 1 for k > k.

3. The gradient iteration and its residual rx = b — Axj satisfy
(i) TK € ’Ck(To,A)
(i) @p41 € [xo + Ki] = {x: x — 20 € K} (the subspace).

14
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