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Abstract

In this paper, I explore shift-share instrumental variables (SSIVs), which have recently
become a popular causal inference tool in the economics literature. Shift-share instru-
ments are a special case of instrumental variables (IVs), which arise in applications
where the outcome of interest is at a local level and the treatment of interest can be
partitioned into both local and group levels. I apply SSIVs to an empirical problem
of whether increase in immigration induces more voter registration for the Republican
party using county-level US data. I find that the estimated effect is not statistically
significant. I further conduct a series of simulations to check whether it is plausible to
have a true positive effect but an insignificant result in the presence of large random
errors.

The University of Chicago Master’s Thesis ©2023 Seung Chul Lee. All rights reserved.



Acknowledgements

In retrospect, the countless hours of effort that now culminates in the completion of this
program has instilled a great sense of confidence in myself as a researcher. I feel extremely
lucky to have had the privilege of learning from the best, to the extent that I now understand
why people write this stuff in their dissertations. First, I would like to express my utmost
gratitude to my academic advisor, Professor Aaron Schein, for the invaluable guidance that
he provided, without which this thesis would not have been possible. I would also like to
thank our Departmental Master’s Advisor and committee member, Professor Mei Wang, for
the immense support she provided throughout my tenure in the program. I am also deeply
indebted to Professor Emanuele Colonnelli at the Booth School of Business, the research
assistantship with whom introduced me to the topic of this work. Furthermore, I convey the
most heartfelt appreciation to all my friends in the Department of Statistics for the dearest
moments along this rigorous path. Last but not least, I would like to thank my family for
the unconditional support that made this journey feasible.

Contents

1 Introduction 1

2 Shift-Share Instruments 2

3 Empirical Application 6
3.1 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Conclusions 16

A Appendix: Details of Monte Carlo Simulation 18

References 23



Understanding Shift-Share Instruments Seung Chul Lee

1 Introduction

A crow flies, a pear falls.

- a Korean proverb1

Causal inference is a difficult task. Indeed, most of the common methods in a statistician’s
arsenal to learn causality are grounded upon assumptions that can never be known. The
popular Neyman-Rubin Causal Model, or the potential outcomes framework, posits the ex-
istence of hypothetical outcomes: one under treatment and the other under the absence
of treatment. In reality, a researcher can only observe either one, but never both. This
setting creates a specific missing value problem, where 50% of the potential outcomes is
always missing. In observational studies, often without the benefit of randomized control
trials (RCTs), such missing values must be substituted to estimate a causal effect. Each
causal inference method is a unique way of imputing the missing outcomes, which requires
different sets of untestable assumptions. For instance, we have the parallel trends assump-
tion for difference-in-differences (DID) and exclusion restriction for instrumental variables
(IVs).

Despite such challenges, scientific studies of causality are inevitable. Notably, IVs have
played a pivotal role across multiple academic disciplines in this process. Instruments are
desirable tools that allows one to learn the causal effect by removing unobserved confounding
effects. In order to qualify as an IV, the variable must meet the assumptions of relevance and
exogeneity, the meanings of which are discussed in more depth in Section 2. Again, these
conditions are not fundamentally testable and must be believed. Most literature using IVs
goes at length to justify the validity of their proposed instrument, often relying on intuition,
logic or prior literature. Naturally, there have been efforts to partially relax the assumptions
that are more plausible to argue for. The shift-share instrumental variable (SSIVs) is a
special instance. SSIVs impose a certain structure to the treatment intensity, whenever the
treatment and response can be measured at some local units and treatment can be subdivided
further into group-specific effects. A canonical example is looking at geographical units as
local units and industries as groups.

The aim of this paper is twofold: (1) obtain a coherent understanding of shift-share instru-
mental variables; and (2) apply it to a real-world data set. For the empirical analysis, I use
an SSIV to study the effect of immigration on voter support for the Republican party in

1It is a phrase used to warn against interpreting two independent, concurrent events as causal. The
saying dates back to the reign of King Injo of Joseon Dynasty in early 17th century.
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the decade leading up to the Trump presidency. This is a particularly interesting question
given the outcome of the 2016 Presidential Elections and how the Republican campaign fu-
eled anti-immigrant sentiment. Such political retaliations against immigration and swings
to conservative parties have been well documented for many other countries outside the US
(Halla et al., 2017; Dustmann et al., 2019; Becker and Fetzer, 2016). My initial analysis
contends that there is no significant evidence for such a trend in the United States, but
Monte Carlo simulations suggest that it may be the fault of data granularity and noise in
calculating the SSIV.

The remainder of the paper is organized as follows. Section 2 provides a thorough dis-
cussion of shift-share instruments. Section 3 presents the empirical application. Section 4
concludes.

2 Shift-Share Instruments

Prior to a formal discussion of shift-share instruments, I briefly discuss instrumental variables
(IVs) and its role in studying causality. Normally, a researcher wishes to learn about the
effect of some treatment X on some response Y . A naïve approach would be to estimate a
simple linear regression of the following form:

Yi = β0 + β1Xi + εi. (1)

However, is it appropriate to interpret the coefficient β1 as a "causal effect"? The answer
would be yes if X were assigned randomly to each individual as in an RCT, i.e., X ⊥⊥ ε.
In other cases, this will not necessarily be true. To illustrate, consider a chain of causal
relationships depicted in Figure 1. In this graph, a researcher is interested in the directional

Figure 1: Graph of Causal Relationship for Instrumental Variables

effect of X on Y . Suppose there is another variable U that affects both X and Y . Under
the model defined by Equation 1, the impact of U lies in the error term ε and one cannot
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consistently estimate the effect β1. In such settings, we call the variable U to be a confounding
variable or a confounder. It is also often the case that confounders are unobservable.

One method that tackles this problem of unobservable confounding is the IV. Consider a
variable Z in Figure 1 that is unrelated to the unobservable U but affects the treatment of
interest X. If the statistician were to acquire such a variable, one could learn the variation
in X that is caused purely by Z and not driven by U . In other words, if Z is orthogonal to
U and we project X onto Z, we should be able to isolate the effect of X that is uncorrelated
with U . Such a variable Z is called an instrumental variable or an instrument.

To have a valid Z, we would require that Z is correlated with X, so that we are not consider-
ing a completely irrelevant variable. This is referred to as the relevance condition. However,
how to formalize the idea that a variable Z is irrelevant to U is quite different with respect
to discipline, namely statistics and econometrics. Here, I try to provide a succinct summary
of the two approaches. For a more detailed treatment of the subject, I direct the reader to
Angrist et al. (1996) and Imbens (2014). First, a statistician’s approach is to invoke (con-
ditional) independence of potential outcomes in the context of the Neyman-Rubin Causal
Model. That is,

Y (Z,X) = Y (Z ′, X) = Y (X), ∀Z,Z ′ and ∀X, (2)

where Y (Z,X) denotes the potential outcome given an instrument value of Z and treatment
value of X. To elaborate, the potential outcomes ("what could have been observed") are
completely determined by the treatment and independent of the instrument Z. To briefly
discuss the concept of potential outcomes, it is a fictitious value that would have been
observed for a person had they received a different treatment. In the canonical setting of
binary treatments2, the researcher will only observe either the treated condition (denoted
Y (1)) or the control condition (denoted Y (0)) for an individual. As an individual will either
receive or not receive the treatment, a statistician can never observe both outcomes. Hence,
the assumption given by Equation (2) is completely philosophical in nature and cannot be
tested with a post hoc analysis of observed data.

On the other hand, an econometrician would prefer the use of structural equations. For
instance, in addition to Equation (1), one can specify the following:

Xi = γ0 + γ1Zi + νi. (3)

2This would be when X ∈ {0, 1}, where X = 1 if the person receives a certain treatment condition and
X = 0 otherwise.
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This is what is commonly referred to as a first stage, named after the two-stage least squares
(2SLS) that is often used to estimate IV structural models (Angrist and Imbens, 1995). The
assumption of irrelevance or the exogeneity condition is formulated as

E[Zi · νi] = E[Zi · εi] = 0,

which is again something that has to be believed about the error terms. There is also a well-
developed literature, such as Kleibergen and Zivot (2003), that takes a Bayesian approach to
this setting, treating the first stage as a prior. The advantage of such structural models is that
it is relatively easier to extend, e.g., continuous X and Z, adding additional covariates for
control, using a multidimensional Z, etc. However, it comes at the cost of interpretability of
model assumptions and restrictions regarding heterogeneous treatment effects. Although the
model assumptions are specified in a different manner, the estimator that both statisticians
and econometricians use boils down to the 2SLS and are equivalent.

Even though instruments can be helpful in learning causality, searching for an instrument
suffers from the same problem that U is unobservable. As briefly mentioned above, the
underlying assumptions in both traditions are ultimately not testable. As a result, the
literature employing IVs often resorts to a verbose discussion about the justifiability of the
instrument. Hence, there have been efforts to come to a plausible setting. Shift-share
(or Bartik) instrument is a good example of such an effort, which have recently become
popular in the economics literature. Its application now spans a wide variety of topics3. The
strategy takes advantage of the fact that each unit of observation may have a heterogeneous
exposure to a common shock, while the shock itself may not be exogenous. It is often
applied in settings where the outcome variable of interest can be subdivided into intuitive
local units and the proposed cause of the said outcome can be subdivided into both local
and group-specific units. A canonical example often invoked in the literature is defining
local subdivisions as geographical units (e.g., states or counties in the United States) and
group-specific subdivisions as industries.

Goldsmith-Pinkham et al. (2020) and Borusyak et al. (2021) elaborate on two different
approaches in validating the Bartik instrument. In the end, both yield in an equivalent

3To name some examples, Autor et al. (2013, 2019) and Borusyak et al. (2021) look at the effect of
competition from Chinese products on economic outcome in the US. Jaravel (2019) study a traditional
question on the effect of demand shocks on the price of goods. Acemoglu and Restrepo (2020) use shift-share
instruments to learn the effect of robot adoptions on the outcome of the labor market. Greenstone et al.
(2020) look at the causal relationship between local bank lending and employment growth in small firms.
Nunn and Qian (2014) study whether US food aid induces a civil conflict in the receiving country. Finally,
Tabellini (2020) studies the effect of immigration on local political and economic outcome in the US.
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result in terms of estimation and inference. However, the intrinsic argument required to
justify the instrument becomes very different. Following the notations used in Goldsmith-
Pinkham et al. (2020), the Bartik instrument takes advantage of two identities:

Xlt =
∑
k

zlktglkt, (4)

glkt = gkt + g̃lkt. (5)

Equation (4) defines the growth of our variable of interest Xlt in a location l at time t as
the weighted average of a set of local- and subgroup-specific shocks glkt, with weights zlkt

reflecting a heterogeneous exposure to this shock. In other words, it is the inner product
of the "shares" (z) at some local level and the "shifts" (g) that are a determinant of X.
Equation (5) further decomposes the local level variable into two parts, namely an overall,
global level component gkt, and an idiosyncratic, location-specific component g̃lkt. Thus, a
Bartik instrument can be formulated as:

Blt =
∑
k

zlk0gkt, (6)

which is essentially a predictor of Xlt based on local shares and global shifts.

Let Ylt be the outcome at time t for location l, Xlt be the regressor of our interest at time
t for location l, and Dlt be a vector of control variables including fixed effects at time t for
location l. Then, a valid structural model for learning the causal effect of X on Y is:

Ylt = Dltβ0 +Xltβ + εlt,

Xlt = Dltτ +Bltγ + ηlt,

where ϵlt and ηlt are random errors.

As with the usual IV, two assumptions are required for the Bartik instrument to be valid:

E [Bltεlt | Dlt] = 0, (exogeneity)

Cov (Blt, Xlt | Dlt) ̸= 0. (relevance)

Of course, these assumptions can also be formulated using potential outcomes model, a
version of which is done by Adão et al. (2019). There are largely two different approaches in
achieving the above conditions. The first is exogeneity of shocks (gkt) à la Borusyak et al.
(2021), which relies on having a large number of subdivisions (k). According to their paper,
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this approach is design-based in spirit and can be interpreted as a form of an instrument. The
other is exogeneity in shares (zlkt) à la Goldsmith-Pinkham et al. (2020). This formulation
is similar to a difference-in-differences (DID) design, with differing degrees of treatment on
each unit instead of a binary treatment indicator.

The models are equivalent under both approaches, relying on the heterogeneous exposure to
a common shock to be exogenous. However, the arguments required to justify the method are
vastly different. The former demands the statistician to argue that shocks (g) are plausibly
unrelated to the outcome variable (Y ) other than through its effect on X. The latter entails
an argument that the initial allocation of shares (z) is plausibly unrelated to the outcome
variable (Y ) other than through its effect on X. In the end, the statistician obtains a valid
instrument in Blt as defined in Equation (6).

3 Empirical Application

To further explore the properties of shift-share instruments, I try using it on a real-world
problem. For this application, I choose to study the causal relationship between immigration
and political support for right-wing parties. To explicitly state the question, I ask: "Does an
increase in immigration cause an increase in support for the Republican party?" This ques-
tion is particularly interesting given the extensive discussions of the relationship following
former President Donald Trump’s victory in the 2016 US Presidential Elections. A similar
phenomenon has been widely documented outside the United States by works such as Halla
et al. (2017) for Austria, Dustmann et al. (2019) for Denmark, and Becker and Fetzer (2016)
for the United Kingdom. Thus, the causal question that I pose is one that would nicely
complement this growing literature on the political backlash of globalization.

3.1 Research Design

My design and formulation of the shift-share instruments is closely related to that of Tabellini
(2020). Tabellini (2020) also looks at the effect of immigration on economic and political
outcomes in the 1910s to 1930s with the IPUMS US Census data. He uses metropolitan areas
as the local level and immigrant origin as the subgroup level. A key finding in this paper
is that an increase in immigration leads to a decrease in support for the Democratic party
in the 1932 and the 1936 Presidential elections, compared to the 1912 and 1916 elections.
The underlying logic of employing the shift-share instruments is that migration tends to
flow toward locations with a large ethnic community of the migrants’ origin. That is, for
instance, new Italian immigrants to the United States are more likely to settle in areas where
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Figure 2: Graph of Causal Relationship for Voter Registration

there is a sizable Italian community. The critical assumption is that such ethnic clusters are
formulated in the early days of settlement in America and are not meaningfully correlated
in the concurrent economic and political environment of the area. To ensure this, the study
focuses only on immigrants from select European countries. Hence, Tabellini (2020) relies
on the exogeneity of shares to invoke the instrument. The resulting identification strategy
can be depicted as the graph in Figure 2.

Although this study is a close relative, there are key departures that clearly differentiates it
from what has been done. First, the period under scrutiny is 2005 to 2015, a decade leading
up to a definitive event of Donald Trump’s election. Thus, it attempts to shed light on the
important claim that the outcome of 2016 elections was largely caused by anti-immigrant
sentiments as suggested by many. Second, I use counties as my local level of shares as opposed
to cities in Tabellini (2020). By extending beyond urban areas, I am able to test whether the
findings also hold in rural areas. Since it has often been pointed out that the rural population
responded more favorably toward Trump’s rhetoric, it would be an important contribution
to check whether this was true. Third, I also look at a broader scope of ethnic groups from all
origins. This is also particularly meaningful, given the diversification of immigrant origins in
the recent era and the negative light in which the Republican campaign portrayed Hispanic
and Asian immigrants.

Due to this last distinction, the original setting in which Tabellini (2020) constructed his
shift-share instrument may not be exactly replicable. The ethnic groups that formed in more
recent years could have gravitated toward areas where there is more economic opportunities
or less adverse attitudes toward foreign immigrants. Hence, although I form a similar in-
strument, the exogeneity of shifts is perhaps more reasonable. In fact, I posit that there was
a negative exogenous shock in global immigration shifts toward the United States during
this period. This would be due to the economic downturn caused by rising competition
from Chinese manufacturers that became more pronounced during this time and the sub-
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prime mortgage crisis in 2007. The adverse shock would have affected immigration from
each country to differing degrees, creating exogenous variations in the number of migrants
from each origin. Thus, based on these assumptions, I formulate the following structural
model:

∆Republt = β0 + β1∆Immlt + εlt, (7)

∆Immlt = γ0 + γ1Blt + ηlt. (8)

Blt denotes the shift-share instrument at county l at time t calculated as
∑

k zlk0gkt, where
zlk0 is the initial share of immigrant population for ethnic group k at location l and gkt is the
global increase in immigration for ethnic group k at time t. ∆Immlt is the actual increase of
immigrants at location l at time t. ∆Republt is the increase in the share of registered voters
for the Republican party at location l at time t. εlt and ηlt are random errors. As discussed
in Section 2, I have identification if

E [Bltεlt] = 0, (exogeneity)

Cov (Blt,∆Immlt) ̸= 0, (relevance)

where exogeneity of Blt is obtained through gkt being exogenous.

3.2 Data

I obtain the data on immigrant growth and shares of ethnic groups for years 2005 and 2015
from the American Community Survey (ACS) provided by IPUMS USA (Ruggles et al.,
2022). The original data set contains a total of 46,373,936 observations at the individual
level. I resort to the ACS as the full count census data is only publicly available up until
1940. This creates major hurdles in terms of the granularity of data. The most salient feature
would be the fact that not all people from all counties are observed due to sampling. There
is also no guarantee that the collected data properly represents even those counties that
are covered. The expectation is that the survey respondents are not subject to a selection
bias. In this case, the proportions and increases in immigrant groups may be susceptible to
noise but remain unbiased of the true changes in immigration. Obtaining a more granular
measure of patterns in migration is one major potential avenue to which this analysis can
be improved.

With the immigration information in ACS data set, I first compute the actual changes in
immigrant proportions in each county from 2005 to 2015 (∆Immlt). To construct the shift-
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Figure 3: Geographical View of the Data
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share instrument, I use the same leave-one-out technique employed by Tabellini (2020). To
elaborate, for county l, I exclude its observations when calculating the global increase in
immigration gkt. Thus, in reality, each county has a slightly different value of global growth
applied to the computation of Blt. This is often done in practice to further mitigate concerns
about endogeneity (Card, 2001; Burchardi et al., 2019; Tabellini, 2020, among others).

As for my response variable, I rely on the voter file data provided by Professor Aaron
Schein at The University of Chicago. This data set is identical to that used by Brown and
Enos (2021), who explore the geographic distribution of partisanship with it. I aggregate
individual voter registration in 2005 and 2015 based on the county of the person’s residence
to obtain the proportion of voters registered for the Republican party in each county for the
two years. I then calculate the percentage increase over this ten-year period as my dependent
variable.

Finally, I match the immigration and voter file data using the county FIPS code available in
both data sets. I end up with a sample of 332 counties, which represents approximately 10%
of the population of all counties in the United States. Panel A of Figure 3 illustrates the
counties that are covered. Quite naturally, I find that the sample mostly contains counties
that are relatively populous. Note that much of the Rocky Mountains region is excluded,
whereas both coastal regions are better represented. Panel B shows the change in immigra-
tion population for the counties in sample. Panel C indicates the change in voter registration
for the Republican party. The patterns observed in the plots are largely consistent with the
idea that there was a surge in Republican support in the Midwest. Table 1 provides some
summary statistics of the resulting data set.

Table 1: Summary Statistics

Statistic N Mean St. Dev. Min Max

∆Immlt 332 0.269 0.304 −0.444 1.562
Blt 332 0.093 0.060 −0.082 0.279
∆Republt 332 0.071 0.283 −0.895 0.983

3.3 Results

Now, I run the model defined by Equations (7) and (8) and present the resulting estimates
using two-stage least squares (2SLS). Panel A of Table 2 provides the structural equation,
i.e., estimated values for Equation (7), and Panel B gives the values for Equation (8). I
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find that the coefficient estimate β̂1, which would be my estimate for the causal effect, is
negative at −5.208 and not statistically significant. The first stage reported in Panel B
further suggests that the correlation between the instrument and endogenous regressor (i.e.,
increase in immigrants) is fairly small. The F statistic of the first stage regression (not
reported on table) is 0.2787, which is equivalent to the squared value of the t statistic.
This value suggests weak identification, i.e., violation of the relevance condition discussed

Table 2: Voter Registration Model Results

Panel A. Structural Equation

Estimate Std Error t p

β̂0 1.470 3.127 0.470 0.641
β̂1 −5.208 11.614 −0.448 0.656

Panel B. First Stage

Estimate Std Error t p

γ̂0 0.255 0.031 8.267 0.000
γ̂1 0.147 0.278 0.528 0.598

in Section 2. A commonly used heuristic to measure weak instruments is whether the first-
stage F statistic falls below 10 (Angrist and Pischke, 2009). Thankfully, there is an extensive
literature that provide some guidance to dealing with weak instruments (Staiger and Stock,
1997; Andrews and Stock, 2005). I choose to implement the weak identification robust
inference technique suggested by Chernozhukov and Hansen (2008) to obtain a robust 95%
confidence interval. This method requires a prespecified interval of values to test β1 on. For
this study, I choose B = [−1, 1] as my set. I find that the significance of β cannot be rejected
on the entirety of this interval, which yields the entire set B as my confidence interval. That
is, I have no evidence of statistical significance even with the help of weak identification
robust inference.

The result I acquire is quite peculiar to say the least. It is not consistent with the extant
literature on the relationship between immigration and support for conservative political
parties in many other parts of the world. It is also contradictory to the prior finding by
Tabellini (2020) in the early 20th century United States. If I were to take it at face value, I
may conclude that the widespread trend in anti-immigrant sentiment is less acute in America.
However, it would much more natural to search for flaws in the research design that may have
yielded such an outcome. To test the possibility that the result is mostly driven by noise,

11



Understanding Shift-Share Instruments Seung Chul Lee

I conduct a Monte Carlo simulation study. This is in the spirit of a prior predictive check,
where the statistician synthetically creates a data set according to a prior (or a structural
model) and assesses its resemblance to the real-world data. I rely on Equations (7) and (8)
and the underlying structure of the Bartik instrument for the simulation.

I now discuss the Monte Carlo simulation in more detail. Note that I try to create the
simplest possible setting, almost as a toy example, to avoid complications that is not specific
to the model. I first randomly draw vectors of initial shares at location l, zl0 = (zl10, zl20, . . . ),
from a Dirichlet distribution, to ensure that the proportions sum to one. I add a small noise
νl

iid∼ N (0, σ2
1) to the initial proportions which are drawn from a normal distribution with

mean zero and normalize to obtain the shares for the next period, i.e.,

zl,t+1 =
zlt + ν

∥zlt + ν∥
.

I then sample global shocks gkt
iid∼ U [0, 1] from a uniform distribution, which accounts for the

fact that increase in immigration will likely be a positive number across all sending countries
over the years. Using the simulated shares and global shifts, I construct the shift-share
instrument as

Blt =
∑
k

zlk0gkt.

Next, I generate errors corresponding to those in Equations (7) and (8) from a bivariate
normal distribution, i.e., [

ηlt

ϵlt

]
∼ N2(0,Σ),

where Σ is positive definite but not diagonal to model the confounding effect of U depicted
in Figure 2. Now, using Equation (8), the endogenous regressor Xlt is created as

Xlt = γBlt + ηlt,

and, finally, the response variable Ylt is defined as

Ylt = βXlt + ϵlt.

Note that I omit intercepts from Equations (7) and (8). Then, using the synthetic data, I
estimate the SSIV model to obtain a point estimate β̂. Finally, I apply the weak identification
robust inference as in Chernozhukov and Hansen (2008) to get a 95% confidence interval
within the chosen region of B = [−2, 2]. I provide a step-by-step guide and the R code used
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for the simulation in Appendix A.

To form a simple but realistic sample, I hypothesize the existence of 100 locations, i.e.,
l ∈ {1, 2, . . . , 100}, and 5 subgroups, i.e., k ∈ {1, . . . , 5}. This would roughly correspond
to the different continents, such as Africa, East Asia-Pacific, Central Asia, Latin America,
and Europe. I create two time periods, i.e., t ∈ {0, 1}. For the specific parameterization, I
choose α =

(
1
5
, 1
5
, . . . , 1

5

)
∈ R5, which is ad hoc. To obtain a fairly small perturbation in the

local shares, I choose σ1 = 0.01 for the distribution of νl. To model the correlated structure
of errors under endogeneity, I choose the covariance matrix of the bivariate normal as

Σ =

[
1 0.5

0.5 1

]
,

where I purposefully assume relatively large variances of the error terms in an attempt to
closely mirror the empirical result using actual data. To enforce weak identification, I posit
γ = 0.1 for the effect of instrument Blt on the regressor Xlt. Finally, I try two values of the
true causal effect of interest, or β ∈ {0.1, 1}. The value 0.1 is the case when we have small,
positive causal effect, whereas the value 1 can be considered sizable. In fact, a true effect of
β = 1 would translate to 1% increase in the proportion of immigrant population in an area
leading to 1% increase in the proportion of Republican voter registration. Also, to properly
gauge the effect of the effect size alone, I use the same seed for the two samples which would
generate identical random components. Not doing this may lead to differences purely due
to the disparity in the generated values.

I now present the results of my simulation study. Table 3 summarizes the result of 200 trials
for each choice of β. Panel A corresponds to the case when β = 0.1 and Panel B corresponds
to the case when β = 1. "Estimate" refers to the estimated second-stage coefficient β̂;
"Lower Bound" refers to the lower bound of the robust 95% confidence interval; "Upper
Bound" denotes the upper bound of the robust 95% confidence interval; "Significant?" refers
to statistical significance, i.e., whether 0 is not contained in the aforementioned confidence
interval; and lastly, "Valid?" denotes whether the ground truth value of β was contained in
the robust confidence interval. As I assume a large noise, I discover that the point estimates
are extremely volatile. The reader can reaffirm that I have the same random parts from the
fact that the standard deviations from both trials are identical. Since the intervals are rather
uninformative, all of them include the ground truth in both simulations.

The most salient result is the fact that it is extremely rare to observe a statistically significant
result. For the small effect simulations, a mere 1.5% of trials yielded statistical significance.
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Table 3: Summary of Simulation Results

Panel A. Small Effect Simulation

Statistic N Mean St. Dev. Min Max

Estimate 200 17.276 241.247 −75.559 3,410.241
Lower Bound 200 −1.882 0.451 −2.000 0.680
Upper Bound 200 1.872 0.380 0.110 2.000
Significant? 200 0.015 0.122 0 1
Valid? 200 1.000 0.000 1 1

Panel B. Large Effect Simulation

Statistic N Mean St. Dev. Min Max

Estimate 200 18.176 241.247 −74.659 3,411.141
Lower Bound 200 −1.805 0.680 −2.000 1.580
Upper Bound 200 1.935 0.225 0.310 2.000
Significant? 200 0.060 0.238 0 1
Valid? 200 1.000 0.000 1 1

This is somewhat expected as it will be extremely difficult to detect a small signal amidst
large noises. However, it is interesting to learn that, even with a relatively large effect
(β = 1), only 6% of trials successfully rejected the null hypothesis that β = 0. In light of
this, I can conjecture that it is quite plausible to observe insignificant results due to large
noises in constructing the shift-share instrument.

Figure 4 presents the histogram of coefficient estimates (β̂) from the 200 trials. I omit
estimates with absolute values larger than 5 for visualization purposes. Again, Panel A
depicts the histogram for small effect size simulations and Panel B is for the large effect size
simulations. The red line denotes the ground truth. I find that, in fact, the estimates tend to
be loosely clustered around the vicinity of the true value. Hence, the SSIV estimator seems
to have little to no bias but inherently vulnerable to the size of the noises.

As the final part of my analysis, I try plotting the robust 95% confidence intervals for both
simulations. Each horizontal line depicts a confidence interval from a single trial. Consistent
with the values in Table 3, all intervals seem to contain the red line, which marks the ground
truth value. Overall, the robust intervals are too large to be informative. There does not
seem to be a clear positive trend, despite the true parameter being positive.
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Figure 4: Histogram of Simulation Estimates
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Figure 5: Simulated Robust Confidence Intervals

4 Conclusions

In this paper, I have reviewed the current literature on shift-share instrumental variables, an
increasingly popular causal inference technique. SSIV depends on a local and subgroup level
structure to be applicable and has the advantage that validity as an instrument can be ob-
tained through two different channels: (1) independent local-level shares, or (2) independent
global subgroup-level shifts. After studying the underlying assumptions for identification,
I have tried applying this method to an interesting empirical problem of immigration and
voter registration to the Republican party in the US. The estimate is counterintuitive to both
the prior literature and the popular opinion. I test for the possibility that the estimator may
not be robust to the presence of relatively large errors via a Monte Carlo simulation in the
spirit of a prior predictive test.

While my analysis does not yield exciting results or solid evidence at the moment, it does
point toward some possible paths that would be of interest to explore. First, SSIVs, much
like the usual instruments, are sensitive to noise in the response and the endogenous regres-
sor. This is of particular importance as an SSIV is likely to contain more noise from the
separate estimation of shares and shifts. Hence, it is critical to gather the most granular
data possible in their calculations. The current setting can be augmented with a more com-
plete data set of immigration patterns than the American Community Survey. Second, weak
identification robust inference may not be able to solve the problem for weakly identified
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shift-share instruments. Such remedial properties would require more academic attention
for advancement.

I plan to continue working on this topic beyond graduation, hopefully producing a full-blown
research paper fit for publication in top economic or political science journals. The current
plans for further developing this thesis project is to (1) apply randomization inference to test
the sharp null hypothesis, (2) re-analyze the model given finer data on immigration, and (3)
try variations of the prior predictive test.
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A Appendix: Details of Monte Carlo Simulation

Simulation Steps

1. Randomly draw vectors of initial shares (zl0) from a Dirichlet distribution.

2. Add small perturbation (ν) from a normal distribution for shares in subsequent periods.

3. Randomly draw global growth (gkt) from a uniform distribution.

4. Randomly draw correlated errors for treatment (Xlt) and outcome (Ylt) from a bivariate
normal distribution.

5. Form shift-share instrument (Blt), treatment (Xlt), and outcome (Ylt), according to
the structural equations.

6. Run IV regression with the simulated variables and obtain weak identification robust
confidence intervals.

7. Repeat Steps 1-6 200 times.

R Code for Simulation

##### Required Packages #####

library(fixest)

library(ivreg)

library(lmtest)

library(sandwich)

library(extraDistr)

library(mvtnorm)

##### Analysis #####

# Weak Identification Robust Inference

weakiv.robust = function(x, y, z, vals, sig = 0.05){

#’ Weak Identification Robust Confidence Intervals for Instrumental Variables

#’

#’ Function to obtain weak identification robust confidence interval

#’ a la Chernozhukov and Hansen (2008)

#’

#’ @param x the vector of regressor
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#’ @param y the vector of response

#’ @param z the vector of instrument

#’ @param vals the set B of values to try

#’ @param sig the significance level of confidence interval (default = 0.05)

#’ @returns a pair of numeric values for the lower bound and upper bound

ivsig = function(b){

#’ Test Significance of Instrumental Variable

#’

#’ Function to calculate the significance of coefficient on the instrument

#’

#’ @param b value of beta (the coefficient on x) to try

#’ @returns 1 if significance of coefficient on the instrument is rejected,

#’ 0 otherwise

temp_mod = lm((y - b*x) ~ z - 1)

rej = (coeftest(temp_mod, vcov = sandwich)[4] < sig)

return(rej)

}

region = data.frame() # initialize df to collect non-rejected region

for(b in vals){

temp = ivsig(b)

region = rbind(region, c(b, temp))

}

colnames(region) = c("b", "z")

reg = region$b[region$z == 0] # non-rejected region

rob_conf_int = c(min(reg), max(reg))

return(rob_conf_int)

}

sim.ssiv = function(loc, k, sig1, sig2, sig3, b1, alph, seed = 1){

if(!is.na(seed)){

set.seed(seed) # for replicability

}

19



Understanding Shift-Share Instruments Seung Chul Lee

# Shares

z0 = rdirichlet(n = loc, alpha = rep(1/k, k)) # initial shares

nu = rnorm(n = loc, 0, sig1)

z1 = (z0 + nu) / rowSums(z0 + nu)

# Shifts

g_glob0 = runif(n = k, min = 0, max = 1) # global growth

g_glob1 = runif(n = k, min = 0, max = 1) # global growth

# Shift-share instrument

ssiv0 = rowSums(z0 * g_glob0)

ssiv1 = rowSums(z0 * g_glob1)

# Generate Errors (Correlated to mimic U)

covar0 = matrix(c(sig2, 0.5, 0.5, sig3), ncol = 2)

covar1 = matrix(c(sig2, 0.5, 0.5, sig3), ncol = 2)

err0 = rmvnorm(n = loc, mean = rep(0, 2), sigma = covar0)

err1 = rmvnorm(n = loc, mean = rep(0, 2), sigma = covar0)

# Endogenous regressor

eta0 = err0[, 1]

eta1 = err1[, 1]

x0 = alph*ssiv0 + eta0

x1 = alph*ssiv1 + eta1

# Response

eps0 = err0[, 2]

eps1 = err1[, 2]

y0 = b1*x0 + eps0

y1 = b1*x1 + eps1

sim.dat = as.data.frame(cbind(y1, x1, ssiv1))

sim.mod = feols(y1 ~ 1 | 0 | x1 ~ ssiv1, data = sim.dat)

#summary(sim.mod)
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sim.rob = weakiv.robust(x = x1, y = y1, z = ssiv1, vals = seq(-2, 2, by = 0.01))

#sim.rob

return(list(df = sim.dat, mod = sim.mod, rob.int = sim.rob))

}

# Small effect size

coefs = NULL

intervals = data.frame()

set.seed(1)

for(i in 1:200){

temp = sim.ssiv(loc = 100, # number of localities

k = 5, # number of groups

sig1 = 0.01, # sd for random change in shares from t = 0 to t = 1

sig2 = 1, # sd for random local idiosyncratic growth

sig3 = 1, # sd for random variation in response

b1 = 0.1, # effect of x on y

alph = 0.1, # effect of ssiv on x (assumed to be small))

seed = NA

)

coefs = c(coefs, coef(temp$mod)[2])

intervals = rbind(intervals, temp$rob.int)

}

# Large effect size

coef.large = NULL

inter.large = data.frame()

set.seed(1)

for(i in 1:200){

temp = sim.ssiv(loc = 100, # number of localities

k = 5, # number of groups

sig1 = 0.01, # sd for random change in shares from t = 0 to t = 1

sig2 = 1, # sd for random local idiosyncratic growth

sig3 = 1, # sd for random variation in response

b1 = 1, # effect of x on y

alph = 0.1, # effect of ssiv on x (assumed to be small))
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seed = NA

)

coef.large = c(coef.large, coef(temp$mod)[2])

inter.large = rbind(inter.large, temp$rob.int)

}
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